首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
一种新型管材液压胀形装置的设计   总被引:1,自引:0,他引:1  
开发了一种简单实用、可在单动压力机上使用的管材液压胀形装置,用于薄壁金属管材的自由胀形、轴压胀形和异形截面中空件的液压胀形.该装置不需要复杂的外部供液系统,通过增压活塞挤压缸体中液体的方式来为管材成形提供液压力和轴向力,通过设计增压缸体和控制增压活塞的行程等来实现两个载荷的合理匹配.试验表明,该装置结构简单、操作方便、工作可靠;合理的载荷匹配能显著地提高管材液压胀形的成形性能.  相似文献   

2.
针对常规的管材液压成形技术需要昂贵的专用设备及模具、生产效率低等不足,开发了一种简单实用、可在冲床或压力机上使用的管材冲击液压成形装置,可用于薄壁金属管材的自然胀形、轴压胀形和异形截面中空件的冲击液压成形。该装置无需外部高压供给系统和专用液压成形设备,通过撞击轴压头挤压容腔中液体的方式来为管材提供液压力和轴压力。通过设计轴压头的行程和调节溢流阀的溢流压力值等来实现最大液压力和轴向进给量的合理匹配,并以304不锈钢毛细管和H65黄铜毛细管为试验管材做了相关试验。研究结果表明:该装置结构简单、操作方便;可实现最大液压力与轴向进给量的协调控制;合理的载荷匹配能显著地提高管材冲击液压成形的成形性能;H65黄铜毛细管破裂时所需的液压力小于304不锈钢毛细管破裂时所需的液压力。  相似文献   

3.
钛合金无缝T型管件液压胀形   总被引:1,自引:0,他引:1  
以Φ57 mm×Φ57 mm×1.5 mm TA2薄壁等径T型管件为典型试验对象,采用液压胀形方法研究了由等厚薄壁无缝钛管材生产钛T型管件的胀形工艺。结果表明,钛T型管件可通过同规格无缝管材在专用设备上液压胀形生产,胀形次数以≥3次为宜;计算钛合金液压胀形单位压力时,应对金属材料胀形单位压力计算公式中的系数1.15进行修正,取1.35~1.6较为适宜。  相似文献   

4.
在液压胀形中,为了解决管材流动应力关系构建中胀形参数求解难的现状,实现变形参数的在线、全场、非接触测量,提出了基于数字散斑相关法获取管材胀形参数方法。首先,描述了数字散斑相关法的基本原理及应用。然后,利用三维数字散斑动态应变测量分析系统和自行开发的管材自然胀形装置,分别对304不锈钢和H62黄铜管材进行了多组内压力的液压自然胀形试验,并在线获取了管材在各组内压下的变形参数,该系统变形测量精度为0.001 mm。最后,通过点云生成、三维重构、母线提取,获得各组内压力下的管材胀形轮廓方程。将所得结果与测量求解法结果的比较,相对误差均在10%之内,表明这两种求解方法具有较好的一致性,能满足管材胀形参数求解的要求。  相似文献   

5.
本文首先分析了双金属复合管液胀成形原理,在获得基管和衬管材料力学性能参数的基础上对基管和衬管满足液胀复合判据条件进行了研究;研究了不同胀形压力下基管与衬管残余接触压应力的变化;最后研究了不同衬管材料对胀形压力和残余接触压应力的影响,为双金属复合管液胀成形工程实际提供了重要依据。  相似文献   

6.
TA2钛合金管材热态气压胀形性能及力学性能(英文)   总被引:1,自引:0,他引:1  
通过单向拉伸试验测试TA2钛合金管材在700~850°C和4×104s1~4×101s1应变速率下的力学性能,观察拉伸断口形貌。开发管材热态胀形实验装置,测试管材在770~950°C的热态气压胀形性能,获得胀破压力和极限胀形率随温度的变化规律,并对典型的破裂形式进行分析。结果表明:TA2钛合金管材的抗拉强度随着温度的升高或应变速率的减小而减小;总伸长率显著增大(142%~331%)。热态气压胀形时,随着温度的升高,胀破压力从6.5MPa单调下降至1.2MPa,极限胀形率呈先增加后降低的变化趋势,在890°C时达到最大值,约70%。在不同温度下气胀时,出现环向破裂、轴向破裂及分散破裂3种不同的破裂形式。TA2钛合金管材适合的热态气压成形温度区间为860~920°C。  相似文献   

7.
为了研究管材在内外压复合作用下的硬化行为,在中间自由胀形区为椭圆形轮廓线的假设条件下,理论推导得到内外压复合作用下管材的应力/应变分析模型;再利用薄壁5A02-O铝合金管材在研制的内外压复合成形实验装置上进行外压为85 MPa(1.0σs)的实验研究,得到5A02铝合金管材在内外压复合作用下的应力-应变曲线。结果表明:5A02铝合金管材在内外压复合作用下进行胀形时,其胀形区轮廓形状依然可以准确地用椭圆函数进行拟合,且最高点处壁厚与胀形高度符合线性关系;由内外压复合胀形得到的应力-应变曲线的硬化指数n值为0.274,低于单向拉伸时得到的n值(0.304)。  相似文献   

8.
《锻压技术》2021,46(4):69-75
针对现有的超声振动液压成形装置中振动主要施加在模具上、振动能量传递路径长、结构复杂等特点,开发了一种将振动直接作用于管材的微小管轴向超声辅助液压成形装置,可在普通压力机上进行超声和常规的轴压胀形。该装置选用标准模架作为轴向进给机构,结构简单、成本低,通过设计耦合了变幅杆功能和密封结构的一体化工具头,将超声振动顺利叠加在轴压胀形过程中,并以TP2无缝内螺纹铜管为试验材料进行了相关试验。结果表明:该装置拆装方便、操作简单,振动的加载降低了对成形过程中轴压载荷和液压力的要求,加强了材料的轴向流动。  相似文献   

9.
AZ31镁合金挤压管材力学性能测试   总被引:1,自引:0,他引:1  
基于圆柱体弹性压缩和厚壁管受内压塑性变形的应力应变分析,得到了测试管件力学性能的方法。在WDW-100kN的试验机上对AZ31镁合金管材弹性内模胀形试验,测得该管材的屈服强度、抗拉强度及伸长率。  相似文献   

10.
液压胀形汽车桥壳的试验研究   总被引:2,自引:1,他引:1  
利用研制的集增压器、冲液器、滑动胀形模具于一体的超高压液压胀形装置,在普通液压机上针对载重0.75t微型卡车后桥壳样件,进行了不同加载路径下的胀形试验,成功试制出桥壳样件。揭示了不同加载条件对管坯胀形的影响,找到了较好的加载路径;剖切胀形后试件,测量主要几何参数及管坯壁厚的变化规律;揭示出极限胀形系数与管坯轴向应变及材料延伸率之间的定量关系。试验研究为生产实践提供参考,为液压胀形桥壳的性能分析提供依据。  相似文献   

11.
Since an inhomogeneous punch pressure distribution occurs in the Nakajima test, equibiaxial flow curves have been determined solely in the hydraulic bulge test so far. By using an innovative measurement technique, it is possible to determine both the punch pressure and strains that occur in the Nakajima test. In this paper, a calibration and realization strategy is presented that allows to determine accurate equibiaxial flow curves for sheet metal materials using a modified Nakajima test without inverse parameter identification. This setup is suitable to substitute the expensive and time-consuming hydraulic bulge test by a simple and common experimental setup.  相似文献   

12.
Evaluation of tubular materials by a hydraulic bulge test   总被引:1,自引:0,他引:1  
This paper aims to evaluate the properties of tubular materials by hydraulic bulge tests combined with a newly proposed analytical model. Annealed AA6011 aluminum tubes and SUS409 stainless steel tubes are used for the bulge test. The tube thickness at the pole, bulge height and the internal forming pressure are measured simultaneously during the bulge test. From above experimental data, the effective stress–effective strain relations can be derived by this analytical model assuming the profile of the free bulge region as an elliptical surface. The flow stresses of the tubular materials by this approach are compared with those obtained by the tensile test and Fuchizawa's model. The finite element method is used to conduct the simulations of hydraulic bulge forming with the flow stresses obtained by the above-mentioned models. The analytical results of forming pressures versus bulge heights are compared with the experimental results to validate the approach proposed in this paper.  相似文献   

13.
High strain rate bulge test technique which is introduced in this paper adopts a rubber-pad as pressure carrying medium to bulge a sheet metal at high velocity using split Hopkinson pressure bar (SHPB) system. The experimental set-up is based on conventional hydraulic bulge test which is modified to mount on SHPB. The thickness thinning of the sheet metal during the test will be considered as a measure of true strain of the bulged sheet. The theoretical approach is developed in this study to attain pressure–strain curves of sheet metals during high strain rate bulge forming process. This approach is followed by a finite element simulation of the process in ABAQUS/Explicit software. To verify the developed method, analytical and finite element methods are compared with experiments.  相似文献   

14.
The object of this paper is to evaluate the stress–strain characteristics of annealed C26800 zinc copper tubes and AISI 1215 carbon steel tubes considering their anisotropic effects by hydraulic bulge tests and tensile tests. In this analytical model, Hill's orthogonal anisotropic theory was adopted for deriving the effective stresses and effective strains under a biaxial stress state. The tube thickness at the pole, bulge height and the internal forming pressure were measured simultaneously during the bulge tests. The effective stress–effective strain relations could be determined by those measured values and this analytical model. The flow stress curves of C26800 copper and AISI 1215 carbon steel tubes obtained by this approach were compared with those obtained by the tensile test with consideration of material's anisotropy. The finite element method was also adopted to conduct the simulations of hydraulic bulge forming with the flow stress curves obtained by the bulge tests and tensile tests. The analytical forming pressures versus bulge heights were compared with the experimental results to validate the flow stress modeling proposed in this paper.  相似文献   

15.
Material properties have powerful impact on the tube hydroforming (THF) process and the quality of the deformed tube, so it is important to select proper materials and evaluate the material formability prior to conducting the process. A simplified and applied tooling, which has no use for any external hydraulic pressure source but internal one, was designed for charactering the material formability in THF. A pressurized-fluid supplier is automatically established to provide the internal pressure and axial load synchronously required for THF, and the ratio of the two loads is achieved by proper design of the supplier. As a stand-alone hydraulic bulging fixture, the tooling can be worked on a conventional press, even on a single action press. Free bulge forming (FBF), bulge forming with axial loading (BFAL), free and restrained bulge forming (free and fixed ends) can be fulfilled by the tooling, and furthermore, bulge forming with proportional loading to some extend can be realized. Comparative bulge forming experiments under various forming conditions were carried out with the tooling to validate this project and the results suggest that restrained conditions on the tube ends highly affect the FBF, while the ratio of the two loads dominates the BFAL.  相似文献   

16.
车灯反射镜液压力作用区域与径向压力   总被引:1,自引:0,他引:1  
针对不规则曲面板材零件成形需要,提出了凹模腔液压力作用区域和主动径向加压的充液拉深新技术。通过数值模拟方法,采用分析软件eta/DYNAFORM5.6和HYPERWORKS9.0相结合,对St16板材车灯反射镜零件液压力作用区域和主动径向加压充液拉深成形过程进行了研究。以零件成形最终壁厚分布和短轴最小宽度为评定标准,分析了不同液压力作用区域和主动径向压力加载路径对成形质量的影响。通过数值模拟证明了,在不同液压力作用区域和主动径向加压充液拉深过程中,成形件的最小厚度的变化趋势。研究表明,采用凹模圆角处向外偏置6mm的液压力作用区域,并配合1.3倍液压力的主动径向压力加载路径,获得的车灯反射镜最大减薄率为10.056%,零件质量好。  相似文献   

17.
This study uses bulge tests to establish the forming limit diagram (FLD) of tubular material AA6011. A self-designed bulge forming apparatus of fixed bulge length and a hydraulic test machine with axial feeding are used to carry out the bulge tests. Loading paths corresponding to the strain paths with a constant strain ratio at the pole of the bulging tube are determined by FE simulations linked with a self-compiled subroutine and are used to control the internal pressure and axial feeding punch of the test machine. After bulge tests, the major and minor strains of the grids beside the bursting line on the tube surface are measured to construct the forming limit diagram of the tubes. Furthermore, Swift's diffused necking criterion and Hill's localized necking criterion associated with Hill's non-quadratic yield function are adopted to derive the critical principal strains at the onset of plastic instability. The critical major and minor strains are plotted to construct the forming limit curve (FLC). The effects of the exponent in the Hill's non-quadratic yield function and the normal anisotropy of the material on the yield locus and FLC are discussed. Tensile tests are used to determine the anisotropic values in different directions with respect to the tube axis and the K and n values of the flow stress of the tubular material. The analytical FLCs using the n values obtained by tensile tests and bulge tests are compared with the forming limits from the forming limit experiments.  相似文献   

18.
本文论述了现有液压胀形法生产护环所存在的不足,介绍了新一代液压胀形工艺即外补液胀形的原理、优点,以及在我国首次生产应用中所显示出的明显的技术经济效益。  相似文献   

19.
为解决超高压密封难题,根据间隙节流降压密封原理和圆筒形腔体受内外压差作用会产生径向弹性变形理论,设计了超高压柱塞液压缸自适应变间隙密封结构。解析计算不同壁厚、不同超高工作压力下的柱塞腔体径向变形量,数值分析不同工作压力、不同初始间隙下的柱塞径向变形量及液压缸密封间隙值分布情况并进行测试。结果表明:超高压状态下,圆筒形柱塞间隙变形量和最小间隙密封节流长度均可跟随工作压力的变化而自动调整,达到减压节流的目标。  相似文献   

20.
直喷汽油发动机由于需要以高压向缸内喷射油雾,因此生产和检测能够满足向发动机输送高压燃油的高压油管的系统设备,是保证发动机安全运行的必要手段。参照国家行业标准JB/T 6014-2011 《柴油机高压油管组件技术条件》以及制造厂商所提出的质量检测要求,设计了以中性水介质进行加载的检测系统,可用于发动机高压油管部件耐压试验,可输出最高75 MPa高压。配套适宜的工装夹具(胎具),此系统也可对其他种类的用于液体输送的金属管、液压胶管、压力容器等进行强度、压力、密封等性能试验,具有一定的通用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号