首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of determining the electromagnetic field scattered by two-dimensional structures consisting of both dielectric and conducting cylinders of arbitrary cross section is considered. The conductors may be in the form of strips and the dielectrics may be in the form of shells. The conductors may be partially or fully covered by dielectric layers, while the dielectrics may be partially covered by conductors. Only homogeneous dielectrics are studied. Both the transverse electric (TE) and the transverse magnetic (TM) cases are considered. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents radiating in unbounded media. The method of moments is used to solve the integral equations. Simple expansion and testing procedures are used. Numerical results for scattering cross sections are given for various structures  相似文献   

2.
A simple moment solution to the problem of the diffraction of a TM plane wave from an infinite, perfectly conducting slotted cylinder of an arbitrary cross section is summarized. The slit cylinder encloses a smaller perfectly conducting cylinder of an arbitrary cross section, and the space between the cylinders is filled with a dielectric material. The equivalence principle is used to obtain a set of coupled integral equations for the induced/equivalent surface currents on the cylinders, and the method of moments is used to solve numerically the integral equations. The electric field integral equation formulation is used. The advantages and the limitations of the method are discussed. Sample results for the induced current, aperture field, internal field, and scattering cross sections are given. These are in good agreement with some of the available published data  相似文献   

3.
Boundary element method for electromagnetic scattering from cylinders   总被引:1,自引:0,他引:1  
The computation of low frequency scattering of electromagnetic fields by solid/hollow dielectric or conducting cylinders using the boundary element method (BEM) is considered. A general computer program has been developed for both transverse electric and magnetic cases. Numerical examples are given for conducting circular cylinders, and solid and hollow dielectric cylinders. The computational accuracy is checked by comparing the results with the analytic solution or computing an error defined from the optical theorem. In addition some problems at an interior resonance of the scatterer are discussed. The method can be directly applied to more complicated geometries.  相似文献   

4.
The computation of radiation and scattering of electromagnetic fields by electrically large convex conducting cylinders, using the geometrical theory of diffraction (GTD) is considered. A general computer program has been developed for the transverse electric case. Illustrative computations are made for examples of radiation from a line source of magnetic current in the vicinity of a polygonal cylinder, scattering of plane waves, radiation from slots, and radiation from electric dipoles. Also given are examples of computations for conducting strips, grazing incidence on polygonal cylinders, and scattering from small cylinders. The computational accuracy is checked by comparing the results to corresponding ones computed by a moment solution to theH-field integral equation.  相似文献   

5.
The equivalence theorem is used to derive novel generalized boundary condition (GBC) integral equations for the tangential components of the electric and magnetic fields on the interfaces of a finite number of dielectric or conducting scatterers. Closed surface, plane, and line extended boundary conditions (EBC) equivalent to the GBC are introduced. The GBC integral equations can now be replaced by any of these EBC integral equations whose solutions are unique and easy to obtain numerically using the moment method. A perfectly conducting sphere and a dielectric sphere in the electrostatic field of two equal and opposite point charges are presented as simple examples of the general procedure.  相似文献   

6.
The scattering properties of TM or TE illuminated lossy dielectric cylinders of arbitrary cross section are analyzed by the surface integral equation techniques. The surface integral equations are formulated via Maxwell's equations, Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by flat-pulse expansion and point matching. Once the surface fields are found, scattered field in the far-zone and radar cross section (RCS) are readily determined. RCS thus obtained for circular homogeneous dielectric cylinders and dielectric coated conducting cylinders are found to have excellent agreements with the exact eigenfunction expansion results. Extension to arbitrary cross-sectioned cylinders are also obtained for homogeneous lossy elliptical cylinders and wedge-semicircle cross-sectioned cylinders, with and without a conducting cylinder in its center. RCS dependences on frequency and conductivity as well as the matrix stability problem of this surface integral equation method are also examined.  相似文献   

7.
A method of moments solution is presented for the problem of transverse magnetic scattering from dielectrically coated conducting cylinders. The solution uses fictitious filamentary electric sources of yet unknown currents to simulate both the field scattered by the cylinder and the field inside the dielectric coating. The simulated fields obey the boundary conditions, namely, the continuity of the tangential components of the electric and magnetic fields across the air-dielectric interface and the vanishing of the tangential component of the electric field at the perfect conductor, at selected sets of points on these respective surfaces. The result is a matrix equation that is readily solved for the unknown current. The currents can be used to determine approximate values for the fields and field-related parameters of interest. The procedure is simple to implement and is general in that cylinders of smooth but otherwise arbitrary shape and coating of arbitrary complex permittivity can be handled. Illustrative examples are considered and compared with available data, demonstrating the efficiency of the solution  相似文献   

8.
A simple moment solution is summarized for the problem of electromagnetic transmission through dielectric-filled slots in a conducting cylindrical shell of arbitrary cross section. The system is excited by a plane-wave polarized transverse electric (TE) to the axis of the shell. The equivalence principle is used to replace the shell and the dielectric by equivalent electric and magnetic surface currents radiating into an unbounded medium. Two different sets of coupled integral equations involving the surface currents are obtained by enforcing the boundary conditions on the tangential components of the total electric and magnetic fields. The method of moments is used to solve the integral equations. Pulses are used for both expansion and testing functions. Special attention is paid to circular and rectangular shells. Results for shell surface current, the internal field, and the aperture field are presented. For the case of air dielectric filling, the results computed using the electric field and/or the magnetic field formulation are in very good agreement with published data. In general, it is observed that the effect of filling a slot with a dielectric is not predictable from a simple theory  相似文献   

9.
A numerical procedure for the solution of electromagnetic scattering problems involving inhomogeneous dielectric cylinders of arbitrary cross section is discussed. The cases of illumination by both transverse magnetic (TM) and transverse electric (TE) plane waves are considered. The scattering problems are modeled via a hybrid integral-equation/partial-differential-equation approach. The method of moments is applied to obtain a system of simultaneous equations that can be solved for the unknown surface current densities and the interior electric field. The interior region partial differential equation and the exterior region surface integral equation are coupled in such a manner that many existing surface integral equation computer codes for treating problems involving scattering by homogeneous dielectric cylinders can be modified easily to generate the block of the matrix corresponding to the surface current interactions. The overall system matrix obtained using the method of moments is largely sparse. Numerical results are presented and compared with exact solutions for homogeneous and inhomogeneous circular cylinders  相似文献   

10.
Using the differential equation approach an exact formal solution for the fields due to an axial electric dipole in the presence of a homogeneous isotropic infinite circular cylinder is obtained in integral form. An asymptotic expansion of the integral yields the far field. Patterns for different choices of the parameters are given. It is seen that for dielectric cylinders in particular, drastic departures from the perfectly conducting case can be obtained leading to more directive patterns. This in turn may have application in the design of arrays.  相似文献   

11.
A simple and efficient numerical technique is presented to solve the electromagnetic scattering problem of coated conducting bodies of arbitrary shape. The surface equivalence principle is used to formulate the problem in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents which represent boundary fields. The conducting structures and the dielectric materials are modeled by planar triangular patches, and the method of moments is used to solve the integral equations. Numerical results for scattering cross sections are given for various structures and compared with other available data. These results are proved accurate by a number of representative examples  相似文献   

12.
An integral equation solution to the problem of transverse magnetic (TM) or transverse electric (TE) scattering by an isotropic dielectric/ferrite material cylinder in the presence of a perfectly conducting half-plane is presented. The technique is termed a method of moments (MM)/Green's function solution since the method of moments is used to determine the electric and magnetic polarization currents representing the material cylinder, while the presence of the half-plane is accounted for by including the half-plane Green's function in the kernel of the integral equations. Numerical results are presented for the echo width, material cylinder interior fields, and the surface impedance of a material slab on the surface of a half-plane.  相似文献   

13.
在TE波入射下,对于计算二维封闭导体柱散射问题所常用的磁场积分方程法,当用于导体薄片时将会失效.本文采用电磁格点理论和电场方法研究这个问题.结合二维介质柱的电磁格点方程,解决了有耗介质涂层导体薄片的TE波散射.文中给出计算实例.  相似文献   

14.
An analysis is described for determining the current induced by transverse electric (TE) excitation on coupled conducting cylinders near the planar interface separating two semi-infinite homogeneous half-spaces of different electromagnetic properties and on partially buried conducting cylinders. The conducting cylinders, of general cross section, are of infinite extent and the excitation is transverse electric to the cylinder axes. Coupled integral equations for the currents induced on the cylinders are formulated and numerical methods for solving them are presented. Data showing the induced current distribution for various cylinders and media parameters of interest are presented and discussed. Relative to the homogeneous space case, the presence of the two media significantly alters the current distribution, especially near the interface  相似文献   

15.
A simple moment-method solution is presented for the problem of electromagnetic scattering from structures consisting of multiple perfectly conducting and dielectric bodies of arbitrary shape. The system is excited by a plane wave. The surface equivalence principle is used to replace the bodies by equivalent electric and magnetic surface currents, radiating into an unbounded medium. A set of coupled integral equations, involving the surface currents, is obtained by enforcing the boundary conditions on the tangential components of the total electric and magnetic fields. The method of moments is used to solve the integral equations. The surfaces of the bodies are approximated by planar triangular patches, and linearly varying vector functions are used for both expansion and testing functions. Some of the limitations of the method are briefly discussed. Results for the scattering cross sections are presented. The computed results are in very good agreement with the exact solutions and with published data  相似文献   

16.
The problem of determining the scattering cross section of an arbitrarily shaped two-dimensional conducting body with an arbitrarily shaped dielectric filled cavity is considered. The problem is solved using a method-of-moments solution for the combined field integral equations. The particular form of the method of moments solution used here uses a minimum number of expansion coefficients. Results are given for transverse electric and transverse magnetic incident waves  相似文献   

17.
The electromagnetic scattering by weakly nonlinear infinite dielectric cylinders is the topic dealt with in this paper. The cylinders are assumed to be isotropic, inhomogeneous, and lossless and to have arbitrarily shaped cross sections. A time-periodic illumination of the transverse magnetic type is considered. The nonlinearity is assumed to be expressed by the dependence of the dielectric permittivity on the internal electric field, under the hypothesis that the operator responsible for the nonlinearity does not modify the scalar nature of the dielectric permittivity and produces a time-periodic output. The electromagnetic scattering is then described by an integral equation formulation, and the electromagnetic field distributions inside and outside a scatterer are approximated by an iterative numerical procedure starting with the application of the distorted-wave Born approximation. In a simplified version of the approach, the classic first-order Born approximation is used. The convergence of the approach is discussed in several examples. In the computer simulations concerning cylinders with different cross-section shapes, the effects of the nonlinearity on the field-component fundamental frequency were evaluated for different values of the nonlinear parameters in the case of a Kerr-like nonlinearity and of a uniform incident plane wave. The generation of higher-order harmonics was also considered  相似文献   

18.
An efficient and accurate numerical procedure for the analysis of the electromagnetic scattering and radiation from arbitrarily shaped, composite finite conducting and dielectric bodies is proposed. A set of coupled electric field integral equations involving surface equivalent electric and magnetic currents is used. The coupled integral equations are solved through planar triangular patch modeling and the method of moments. Two separate, mutually orthogonal vector functions for each edge connecting a pair of triangular patches have been developed. Numerical results for disk/cone and cylinder/cone structures are compared with other available data. Limited comparison with experimental data has also been made  相似文献   

19.
The differential evolution strategy with individuals in groups (GDES) is proposed to solve the electromagnetic inverse scattering of multiple perfectly conducting cylinders with transverse magnetic wave incidence. The inverse problem is to locate the cylinders and reconstruct their contours, besides the determination on the number of cylinders. The governing electric field integral equations for the scattering problem are expressed as surface integrals over the cylinder contours. The scattering problem is solved using point-matching method with pulse basis and Dirac test functions. The inverse problem is cast into an optimization problem and solved using the GDES. Numerical reconstruction results show that both the quality of the reconstructed profile and the convergence performance are significantly improved, as compared to the original DES.  相似文献   

20.
An E-field integral equation for the computation of the radar cross section of finite composite conducting and lossy inhomogeneous dielectric bodies is presented. The equivalence principle is used to replace all conducting bodies by an equivalent surface electric current, and the dielectric is replaced by an equivalent volume polarization current. The respective boundary conditions on the dielectric and the conductor are utilized to solve for the electric current on the entire structure. Also the augmented conjugate gradient method is presented for the solution of extremely large systems of equations that arise in the present problem. Finally, typical results are presented to illustrate the potential of this method  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号