首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delamination along an interface between dissimilar materials is the primary cause of failure in microstructures like electronic packages, micro-electro-mechanical systems (MEMS), and so on. Fracture mechanics is a powerful tool for the evaluation of delamination. However, many materials used in microstructures such as composite materials and single crystals are anisotropic materials. Stress intensity factors of an interface crack between dissimilar anisotropic materials, which were proposed by Hwu, are useful for evaluating the reliability of microstructures. However, numerical methods that can analyze the stress intensity factors of an interface crack between anisotropic materials have not been developed. We propose herein a new numerical method for the analysis of an interface crack between dissimilar anisotropic materials. The stress intensity factors of an interface crack are based on the generalized plane strain condition. The energy release rate is obtained by the virtual crack extension method in conjunction with the finite element method for the generalized plane strain condition. The energy release rate is separated into individual modes of the stress intensity factors KI, KII, and KIII, using the principal of superposition. The target problem to be solved is superposed on the asymptotic solution of displacement in the vicinity of an interface crack tip, which is described using the Stroh formalism. Analyses of the stress intensity factors of center interface cracks between semi-infinite dissimilar anisotropic media subjected to concentrated self-balanced loads on the center of crack surfaces and to uniform loads are demonstrated. The present method accurately provides mode-separated stress intensity factors using relatively coarse meshes for the finite element method.  相似文献   

2.
Interface and interfacial cracks interacting with screw dislocations in piezoelectric bimaterials subjected to antiplane mechanical and in-plane electrical loadings are studied within the framework of linear piezoelectricity theory. Straight dislocations with the Burgers vector normal to the isotropic basal plane near the interface or interfacial crack are considered. The dislocations are characterized by a discontinuous electric potential across the slip plane and are subjected to a line-force and a line-charge at the core. An explicit solution for the screw dislocation in piezoelectric bimaterial with straight interface is found based on the solution of a similar problem for infinite homogenous medium. The obtained relation is independent of the nature of singularity. This fundamental result is used to analyze dislocation interacting with a set of collinear interfacial cracks in piezoelectric bimaterials. Three solutions for the screw dislocation interacting with a semi-infinite crack, finite crack, and edge crack between two bonded dissimilar piezoelectric materials are obtained in closed-form. These solutions can be used as Green’s functions for the analyses of interfacial cracks in piezoelectric bimaterials.  相似文献   

3.
Effect of interface stress on the interaction between a screw dislocation and a coated nano-inhomogeneity is investigated in the framework of surface elasticity. By using the complex variable function method, the stress fields in heterogeneous materials and the image force acting on the screw dislocation are derived analytically. The results indicate that, when the radius of the coated inhomogeneity is reduced to nanometers, the influence of interface stress on the motion of the dislocation near the inhomogeneity becomes significant and the image force acting on the screw dislocation depends on the size of the coated inhomogeneity, which differs from the classical solution. And it is showed that the thicker coated layer relative to inclusion decreases or increases the influence of a coated inclusion on the image force of dislocation, not as expected.  相似文献   

4.
New numerical methods were presented for stress intensity factor analyses of two-dimensional interfacial crack between dissimilar anisotropic materials subjected to thermal stress. The virtual crack extension method and the thermal M-integral method for a crack along the interface between two different materials were applied to the thermoelastic interfacial crack in anisotropic bimaterials. The moving least-squares approximation was used to calculate the value of the thermal M-integral. The thermal M-integral in conjunction with the moving least-squares approximation can calculate the stress intensity factors from only nodal displacements obtained by the finite element analysis. The stress intensity factors analyses of double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load were demonstrated. Excellent agreement was achieved between the numerical results obtained by the present methods and the exact solution. In addition, the stress intensity factors of double edge cracks in jointed dissimilar anisotropic semi-infinite plates subjected to thermal loads were analyzed. Their results appear reasonable.  相似文献   

5.
The edge dislocations near a cracked sliding interface were investigated. A continuous distribution of edge dislocations with Burgers vector along the y direction was used to simulate a crack of finite length along the sliding interface. From the dislocation distribution the stress field in the entire space was obtained. The stress intensity factors at both crack tips and image force on the edge dislocation were derived. The effects of the dislocation source and shear modulus ratio on both stress intensity factors and image force were also studied. Only mode I stress intensity factors at both tips were found in the composite materials with a sliding interface. The edge dislocations with Burgers vector along the y direction emitted from the crack always shield it to prevent propagation. The above results may reduce to an edge dislocation near a semi-infinite crack along a sliding interface including a sliding grain boundary. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper, the interface cracking between a functionally graded material (FGM) and an elastic substrate is analyzed under antiplane shear loads. Two crack configurations are considered, namely a FGM bonded to an elastic substrate containing a single crack and a periodic array of interface cracks, respectively. Standard integral-transform techniques are employed to reduce the single crack problem to the solution of an integral equation with a Cauchy-type singular kernel. However, for the periodic cracks problem, application of finite Fourier transform techniques reduces the solution of the mixed-boundary value problem for a typical strip to triple series equations, then to a singular integral equation with a Hilbert-type singular kernel. The resulting singular integral equation is solved numerically. The results for the cases of single crack and periodic cracks are presented and compared. Effects of crack spacing, material properties and FGM nonhomogeneity on stress intensity factors are investigated in detail.  相似文献   

7.
The interaction between a screw dislocation and an elliptical nano inhomogeneity embedded in an infinite matrix is investigated. The interface stress effects of the nano inhomogeneity are accounted for with the Gurtin-Murdoch model. The stress fields inside the inhomogeneity and matrix are then solved with the complex variable and conformal mapping method. The solution is of semi-analytical nature and is verified by studying a degenerated case wherein a screw dislocation interacts with a circular nano inhomogeneity. The image force on the screw dislocation is then calculated. The influences of the elastic mismatch between the inhomogeneity and matrix, the interfacial properties, the aspect ratio of the elliptic nano inhomogeneity and the position of the screw dislocation on the image force are systematically discussed.  相似文献   

8.
A new numerical method to calculate the stress intensity factors (SIFs) of a three-dimensional interface crack between dissimilar anisotropic materials was developed. In this study, the M-integral method was employed for mode separation of the SIFs. The moving least-square method was utilized to calculate the M-integral. Using the M-integral with the moving least-square method, SIFs can be automatically calculated with only the nodal displacements from the finite element method (FEM). Here, SIFs analyses of some typical three-dimensional problems are demonstrated. Excellent agreement was achieved between the numerical results obtained by the present method and the corresponding results proposed by other researchers. In addition, the SIFs of a single-edge crack, a through crack, and a semi-circular crack between two anisotropic solids in three-dimensional structures were analyzed.  相似文献   

9.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

10.
A crack emanating from the apex of an infinite wedge in an anisotropic material under antiplane shear is investigated. An isotropic wedge crack subjected to concentrated forces is first solved by using the conformal mapping technique. The solution of an anisotropic wedge crack is obtained from that of the transformed isotropic wedge crack based on a linear transformation method. Expressions for the stress intensity factor for the anisotropic wedge crack with both concentrated and distributed loads are derived. The stress intensity factors are numerically calculated for generally orthotropic wedge cracks with various crack and wedge angles as well as anisotropic parameters.  相似文献   

11.
In the present work, we predict contribution of a partially debonded circular inhomogeneity into the material overall elastic compliance. Debonding at the matrix/inclusion boundary is modeled as interfacial arc cracks. The change in the elastic compliance caused by interface cracking is estimated through the accompanying energy change that is related to the mode I and mode II stress intensity factors at the crack tips. The sum of the crack compliance and the inhomogeneity compliance (with perfect bonding) gives the total compliance of the debonded inhomogeneity. The latter is obtained in terms of the material properties and crack length. Additional analysis shows that the replacement of an interface crack with a crack in a homogenized medium is an inadequate approach when seeking approximate solutions. The paper also provides guidelines how to determine properties of a fictitious perfectly bonded orthotropic inhomogeneity that has the same contribution into the material compliance as the debonded isotropic one. This problem is of practical importance when modeling damage accumulation in composite materials by means of homogenization schemes.  相似文献   

12.
The elastic interaction of screw dislocations and a star crack with a central hole was investigated. The complex potential of the present problem was obtained from that of an internal crack in an infinite medium using the conformal mapping technique. The stress field, image force and strain energy of dislocation, and stress intensity factor at the crack tip were derived. The critical stress intensity factor for dislocation emission was calculated based on the spontaneous dislocation emission criterion. The influence of the ratio of crack length to hole radius, crack number, and dislocation source on the above mechanical variables were studied. The present solution was reduced to several special cases previously reported in the literature.  相似文献   

13.
The undulant interface of a bi-material, which is due to manufacturing or instability under high stress, may provide certain preferred places where microdefects accumulate. In the present paper, an edge dislocation near a slightly wavy interface is studied via a regular perturbation scheme. Stress investigation for the interaction between the edge dislocation and the wavy bi-material interface has been carried out. The Peach-Koehler force on the dislocation is calculated from the first perturbed solution of the stress fields. The influence of several key parameters, such as the Dundurs bi-material interface constants α, β, the distance of the dislocation to the interface, the wavy extent of the interface, etc., on the behavior of the dislocation has been analyzed. The numerical examples indicate that there are certain “equilibrium” points around which the dislocations are expected to be accumulated. In turn, microdefects, such as microcracks and microvoids, may be initiated near these sites. Results obtained can be applied to study crack initiation or delamination along bonded bi-material interfaces.  相似文献   

14.
The classical problem for a partially debonded circular inhomogeneity is revisited. The interaction of the interfacial crack and a point singularity such as a point force and/or a dislocation is dealt with. Also the circular arc-shaped interfacial crack under remote stress is solved. This problem has been solved by many researchers for the cases of various loading types. However, lack of generality in the solution technique together with too complicated form of the solution makes it hard to grasp the structure of the solution. Based on the recently published technique for a perfectly bonded circular inhomogeneity, this problem is revisited. The resulting form of the solution is very simple, therefore, its structure is easily understood. Due to the merit of the present method, the image force on the edge dislocation near the tip of the interfacial crack is easily obtained.  相似文献   

15.
An approach based on the continuous dislocation technique is formulated and used to obtain the Mode I and II stress intensity factors in a fully anisotropic infinite strip with a central crack. First, the elastic solution of a single dislocation in an anisotropic infinite strip is obtained from that of a dislocation in an anisotropic half plane, by applying an array of dislocations along the boundary of the infinite strip, which is supposed to be traction-free. The dislocation densities of the dislocation array are determined in such a way that the traction forces generated by the dislocation array cancel the residual tractions along the boundary due to the single dislocation in the half plane. The stress field of a single dislocation in the infinite strip is thus a superposition of that of the single dislocation and the dislocation array in the half plane. Subsequently, the elastic solution is applied to calculate the stress intensity factors for a center crack in an anisotropic strip. Crack length and material anisotropy effects are discussed in detail.  相似文献   

16.
The behavior of screw dislocations emitted from a star crack with a central hole was investigated using discrete dislocation modeling. Cracks are uniformly distributed along the circumference of a circular hole. Dislocations are assumed to be emitted one by one from the crack tips along the radial direction. Each emitted dislocation moves along the radial direction and its velocity is proportional to the third power of the effective shear stress. A dislocation-free zone exists based on the assumption that the crack tip must overcome an energy barrier to emit a dislocation. The effects of the central hole, slit crack, number of cracks and applied stress on the plastic zone, total number of dislocations emitted from all crack tips and the first crack tip, and the dislocation-free zone were studied for a given friction stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Weight functions proposed for interface cracks in dissimilar isotropic materials (Gao, 1991; Chen and Hasebe, 1994) are extended to treat those in piezoelectric materials. The difficulties in separating the eight distinct complex arguments are overcome. The pseudo-orthogonal properties of the eigenfunction expansion form found in isotropic dissimilar cases(Chen and Hasebe, 1994) are proved to be valid in the present cases although the mathematical manipulations performed here seem much more complicated than those in isotropic dissimilar materials. Several path-independent integrals are obtained and all the coefficients in the eigenfunction expansion form, including the K I, K II, K III and K e, could be calculated by the weight functions introduced in this paper. It is concluded that the weight functions presented here provide a powerful tool to calculate the dominant parameters at the interface crack tip without any special treatment to the singular stress field of the near-tip region.  相似文献   

18.
In this paper, the pseudo-traction method is combined with the edge-dislocation method (i.e. PTDM) to solve the interaction problem between an interface crack and a parallel subinterface crack in dissimilar anisotropic materials. After deriving the fundamental solutions for an interface crack loaded by normal or tangential tractions on both crack surfaces and the fundamental solutions for an edge dislocation beneath the interface in the lower anisotropic material, the interaction problem is reduced to a system of a singular integral equations by adopting the well-known superposition technique. The equations are then solved numerically with the aid of the Chebyshev numerical integration and the Chebyshev polynomial expansion technique. Several typical examples are calculated and numerical results are shown in figures and tables from which a series of valuable conclusions is obtained. Since the present results should be verified and since no previous results exist to compare them with a consistency check in introduced which starts from the conservation law of the J-integral in anisotropic cases. It is shown that the check provides a powerful tool to examine the results, although it really presents a necessary condition rather than a sufficient way to the crack-tip parameters of the interface crack and the subinterface crack in the dissimilar anisotropic materials.  相似文献   

19.
The problem of a crack in general anisotropic material under LEFM conditions is presented. In Part I, three methods are presented for calculating stress intensity factors for various anisotropic materials in which z = 0 is a plane of symmetry. All of the methods employ the displacement field obtained by means of the finite element method. The first one is known as displacement extrapolation and requires the values of the crack face displacements. The other two are conservative integrals based upon the J-integral. One employs symmetric and asymmetric fields to separate the mode I and II stress intensity factors. The second is the M-integral which also allows for calculation of KI and KII separately.All of these methods were originally presented for isotopic materials. Displacement extrapolation and the M-integral are extended for orthotropic and monoclinic materials, whereas the JI- and JII-integrals are only extended for orthotropic material in which the crack and material directions coincide. Results are obtained by these methods for several problems appearing in the literature. Good to excellent agreement is found in comparison to published values. New results are obtained for several problems.In Part II, the M-integral is extended for more general anisotropies. In these cases, three-dimensional problems must be solved, requiring a three-dimensional M-integral.  相似文献   

20.
The Stroh sextic formalism, together with the Fourier analysis and singular integral equation technique, is used to study propagation of possible slip waves in presence of local separation at the interface between two contact anisotropic solids. The existence of such waves is discussed in details. It is found that such waves may exist if at least one medium admits a Rayleigh wave below the minimum limiting speed of the two media. The wave speed is not fixed. It can be of any value in some regions between the lower Rayleigh wave speed and minimum limiting speed, depending on the existence of the first and second slip-wave solutions without interfacial separation studied by Barnett et al. [Proc. Roy. Soc. Lond. A 415 (1988) 389]. The waves have no free amplitude directly, but involve arbitrary size of the separation zone which depends on the intensity of the motion. The interface normal traction and the particle velocities involve square-root singularities at both ends of the separation zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号