首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZK60镁合金热变形过程中的动态再结晶动力学   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机对ZK60镁合金在温度为200~400℃、应变速率为0.001~10s-1、最大变形量为60%的条件下进行恒应变速率高温压缩实验,研究高温变形过程中合金的动态再结晶行为;采用EM模型描述合金的动态回复曲线,以此为基础,得出ZK60合金热压缩过程中的动态再结晶动力学Avrami方程.利用有限元模拟合金热压缩过程中的动态再结晶.结果表明ZK60合金热压缩过程中由于存在动态再结晶的软化作用,流变应力达到峰值后逐渐减小,并最终达到稳态;随着变形量的增加和变形温度的升高,动态再结晶体积分数增加,合金变形更加均匀;随着应变速率的增加,动态再结晶分数有所减小,且.变形也更不均匀.  相似文献   

2.
采用Gleeble-1500热模拟机研究6016铝合金单道次高温压缩变形时的显微组织演变。采用光学显微镜和透射电子显微镜分析合金在不同变形条件下的组织形貌特征。结果表明:在高温压缩变形时,该合金的变形激活能为270.257kJ/mol,硬化指数为8.5254;流变应力双曲正弦的自然对数值与温度补偿Zener-Hollomon参数自然对数值成线性关系;合金低温、低应变速率时的主要变形组织为动态回复组织,而高温变形时产生局部动态再结晶组织;该铝合金高温变形时的主要软化机制为动态回复,只有在高温、高应变速率下发生部分的动态再结晶;合金平均亚晶粒尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小。  相似文献   

3.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

4.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

5.
通过Gleeble-3500热模拟机在350~500℃温度范围对2195铝锂合金进行平面应变压缩实验,应变速率为0.01~1 s~(-1),变形量60%。研究合金在高温下的流变行为并通过背散射电子衍射(EBSD)和X射线衍射(XRD)揭示了微观组织的演变规律。结果表明:流变应力随应变速率的增加而升高,而随着温度的升高流变应力降低,并且达到峰值应力和稳态流变时所需的应变也减少,建立含有双曲正弦关系的本构方程并得到合金的变形激活能Q为278.208 kJ/mol;随着Zener-Hollomon参数值的增加,合金的流变集中增加,合金的软化机制主要是动态回复,此外还有动态再结晶形成,动态再结晶主要为不连续动态再结晶,而连续动态再结晶和几何动态再结晶均容易在较低Z值和较高Z值下形成;变形组织中含有大量的轧制织构,变形晶粒主要为S{123}á634?、Brass{011}á211?、Copper{112}á111?和Goss{011}á100?这4种取向。  相似文献   

6.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

7.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

8.
在实验温度范围为380~500℃、应变速率范围为0.001~10.0 s-1,采用Gleeble-1500热模拟机,对含钪Al-Cu-Li-Zr合金的高温热变形行为进行研究,采用金相显微镜和透射电镜观察合金在压缩变形时的组织变化.结果表明:变形温度和应变速率的变化强烈影响合金的流变应力,合金的流变应力随变形速率的增加而增大,随变形温度的升高而降低,可用包含Arrhenius项的Zener-Hollomon参数描述合金在高温压缩变形时的流变应力行为.当合金在温度低于440℃变形时,合金中主要形成亚晶组织,仅发生动态回复;在ln Z≤36.7变形时,合金发生部分动态再结晶,其动态再结晶形核机制主要为晶界弓出和亚晶合并形核.  相似文献   

9.
利用Gleeble-1500数控动态力学模拟试验机,对Cu-1.56Ni-0.65Si-1.12Co-0.05Zr合金进行热压缩试验,应变速率0.002~ 10 s-1,变形温度为600~900℃,总变形量为50%.结果 表明:在热压缩过程中,Cu-1.56Ni-0.65Si-1.12Co-0.05Zr合金的流变应力随着变形温度的降低和应变速率的增加而升高,应力在达到峰值之后不再发生明显变化,高温、低应变速率的变形条件更有利于合金的动态再结晶.显微组织观察表明合金的动态再结晶机制为连续动态再结晶和不连续动态再结晶共同作用,析出相主要钉扎在位错和晶界处,能够阻碍位错的运动从而增强基体.  相似文献   

10.
AA7005铝合金的热加工变形特性   总被引:21,自引:4,他引:21  
研究了AA7005合金高温压缩变形时的流变应力、动态回复与再结晶以变形组织变化特征。合金稳态变形时,应变速度、温度和流变应力之间满足包含热激活材料常数的Arrhenius项的双曲正弦关系,变形过程为受位错增殖和相互销毁速率控制的热激活过程,螺型位错的交滑移和刃型位错的攀移为主要动态回复机制。动态回复时,形成典型的变形亚晶组织,亚晶尺寸随1nZ的减小而增大。高温低速变形条件下,合金发生局部几何动态再结晶,流变曲线呈现连续下降的特征,形成与原始纤维组织不同的细小等轴大角度再结晶晶粒。  相似文献   

11.
镁合金Mg-Zn-Y-Zr的高温变形及本构方程   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机对铸态镁合金Mg-Zn-Y-Zr在变形温度为250~450℃,应变速率为0.001~1s-1条件下的高温压缩变形行为进行研究,利用双曲正弦关系描述了该合金的本构方程。结果表明,Mg-Zn-Y-Zr合金的高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真实应力-应变曲线基础上,建立的Mg-Zn-Y-Zr合金高温变形的本构模型较好地表征了其高温流变特性。  相似文献   

12.
AZ91D镁合金单向压缩条件下的变形组织   总被引:1,自引:1,他引:0  
采用Gleeble-1500热/力耦合模拟试验机对AZ91D镁合金在100~400℃,应变速率在0.005~5 s-1条件下的单向压缩变形行为进行了研究,利用光学显微镜和透射电子显微镜观察分析不同变形条件下的显微组织.结果表明:在较低温度(100℃)下,应力随着应变的增加逐渐增大,直至断裂;而在变形温度高于200℃时,其压缩流变应力均呈现典型的动态再结晶特征.AZ91D合金在低温区域变形时,孪晶是主要的变形形式;在中温区域,由位错滑移和连续动态再结晶协调变形;到高温区域,主要由位错滑移和连续、非连续动态再结晶一起协调变形.  相似文献   

13.
采用Gleeble-1500D热力模拟试验机进行了新型Al-Zn-Mg-Cu高强铝合金的热压缩试验,变形温度为420℃~350℃,应变速率为0.01 s-1~1 s-1,变形程度为20%~80%。分析了热变形参数(变形温度、应变速率和变形程度)对组织演变机理和规律的影响。结果表明,温度和变形程度显著影响该合金组织演变机理和规律。在试验温度范围内,压缩变形程度达到60%时,原始铸态组织完全转变为均匀的锻态组织。高温有利于该合金动态再结晶过程的发生,应变适中时,组织以不连续动态再结晶产生新晶粒,再结晶分数较少;应变很大时,组织发生几何动态再结晶,再结晶分数较高。低温时,锻态变形组织基本为加工硬化或动态回复组织。  相似文献   

14.
采用等温热压缩实验研究了一种新型镍基高温合金在不同热变形条件下(变形温度1040~1120℃、应变量0.35~1.2、应变速率0.1 s-1)的动态再结晶行为。通过光学显微镜(OM)、扫描电子显微镜(SEM)和电子背散射衍射仪(EBSD)研究变形温度和应变量对合金热变形过程中组织演变和动态再结晶(DRX)形核机制的影响。结果表明,根据加工硬化率曲线能够准确确定DRX出现的临界应力和临界应变。合金的DRX晶粒体积分数随变形温度和应变量的增加而增加。在高温低应变速率下,不连续动态再结晶(DDRX)和连续动态再结晶(CDRX)形核机制同时发生。随着变形温度的升高,CDRX形核机制减弱,而CDRX机制在高温条件下占据主导。随着应变量的增加,合金中DDRX机制逐渐变强。热变形后期,CDRX仅作为辅助形核机制发挥作用。另外,Σ3孪晶界的形成有助于DRX晶粒的形核。  相似文献   

15.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

16.
采用Gleeble-1500热模拟机研究了工业纯铝高温压缩变形的组织演化行为,采用光学显微镜及透射电镜研究了纯铝在不同压缩变形条件下的组织形貌特征.结果表明,在应变速率为10-2s-1,变形温度为220、300℃时,真应力-真应变曲线呈稳态特征,材料发生了动态回复;当变形温度大于380 ℃时,材料发生了动态再结晶;在变形温度为460 ℃时,应变速率为10-3~1 s-1条件下变形时发生了动态再结晶;动态再结晶机制主要是连续动态再结晶,同时有少量表现为几何动态再结晶.  相似文献   

17.
通过熔炼得到了铸态LZ61镁锂合金,对其进行了热压缩变形行为研究,分析了变形温度及应变速率对其热变形行为的影响,并建立了本构方程。结果表明,合金的应变速率敏感指数m=0.218,平均热变形激活能Q=99.21kJ/mol,合金的流变曲线均属于动态再结晶型,流变应力随着温度升高(应变速率降低)而减小。温度及应变速率对合金的动态再结晶影响显著;显微组织的变化证明了动态回复和动态再结晶的发生。铸态合金组织由α-Mg相基体及弥散分布在晶界上的β相组成。经热压缩后,在相同温度下,随着应变速率降低,组织由粗细相间的晶粒转变为细小均匀的再结晶晶粒。在同一应变速率下,随着温度升高,再结晶区域逐渐增大,晶粒明显细化。  相似文献   

18.
利用Gleeble-3500热/力模拟试验机进行不同变形参数(变形温度和应变速率)下的高温热模拟单向压缩试验,对得到的真应力-真应变曲线进行分析,研究了不同变形工艺参数对TC4钛合金单向压缩时真流动应力及其压缩组织的影响。通过对变形后试样的金相组织观察,研究了材料在高温变形过程中的动态再结晶和回复过程。结果表明,流变应力随着应变的增加而迅速增大至最大值,随后开始缓慢降低,最后趋于稳定。随着变形温度升高,晶界破碎化程度逐渐增大,条状组织减少,组织中的次生α相含量逐渐增加。  相似文献   

19.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

20.
采用Gleeble-3500热模拟试验机对喷射成形Al-9Mg-0.5Mn合金进行等温热压缩试验,研究了变形温度、应变和应变速率对合金动态再结晶行为的影响。结果表明,合金在热压缩变形初期,加工硬化起主导作用,流变应力随变形程度的增加迅速增大;但随着应变增加,动态再结晶是主要的软化机制;变形温度越高,合金变形更均匀,合金的储存能更高,动态再结晶的形核和长大过程更快;应变速率越小,再结晶核心及亚结构有充分的时间形成和长大,合金发生完全动态再结晶,合金的组织为再结晶组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号