首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
磷石膏基胶凝材料在使用时,工作性能较差,需要加入减水剂来改善工作性。而磷石膏胶凝材料对现有的混凝土减水剂的存在适应性不良的问题。为了深入了解减水剂对磷石膏基胶凝材料的匹配性,本文探究了萘系、聚羧酸和脂肪族类三种减水剂及掺量对磷石膏基砂浆材料各项性能的影响规律。通过对砂浆浆体的流动度、硬化体的力学性能,以及28d吸水率和软化系数进行评价,获得最佳的减水剂种类和掺量。研究结果表明:萘系减水剂与磷石膏基砂浆的适应性较好,且掺量为0.4%时较合适;砂浆流动度为17.0 cm,砂浆硬化体的7 d、28 d和90 d抗压强度分别为18.1 MPa、33.1 MPa和37.6 MPa,28 d吸水率和软化系数分别为2.51%和0.91。  相似文献   

2.
采用石灰中和改性二水磷石膏,再添加水泥、机制砂及增塑剂制备水泥基湿拌抹灰砂浆,分析了磷石膏、水泥及增塑剂不同掺量下湿拌砂浆的凝结时间、稠度以及力学强度等物理性能,并采用X射线衍射(XRD)及扫描电镜(SEM)分析了磷石膏在湿拌砂浆中的作用机理。结果表明,随着磷石膏用量增加,湿拌砂浆的凝结时间延长,28 d抗压强度及14 d拉伸黏结强度降低;随着水泥用量增加,砂浆的凝结时间缩短,强度逐渐增大;随着增塑剂用量的增加,砂浆的黏结性能及润滑性能逐步优异,凝结时间逐渐增加。当控制材料掺量比例(质量分数)磷石膏为35%、机制砂为48%、水泥为17%、外掺石灰为2%、增塑剂为0.3%时,砂浆的凝结时间为25 h,28 d抗压强度为6.2 MPa,14 d拉伸黏结强度为0.31 MPa,均符合行业标准JC/T 230—2007《预拌砂浆》中WP M5质量技术指标要求。磷石膏在水泥基湿拌砂浆中的主要作用是参与反应的磷石膏提供硫酸根并与水化铝酸钙反应生成钙矾石,形成提高砂浆强度的矿物起胶结作用,未反应的磷石膏作为细集料起填充作用。  相似文献   

3.
磷石膏排放量大,利用率低,资源化利用迫在眉睫。以磷石膏为原料,经激发预处理后与水泥混合制备磷石膏免烧砖,研究了激发时间对磷石膏免烧砖的吸水率、含水率、饱和系数、抗压强度和物相的影响,结果表明:随着激发时间的延长,磷石膏免烧砖的吸水率和含水率均呈上升趋势;抗压强度和饱和系数先增大后减小,在激发时间为4 h时,二者均达到最大,因此确定磷石膏的最佳激发时间为4 h。对激发4 h后的磷石膏进行了XRD分析,发现其主要成分为CaSO4·2H2O,但相比未处理的磷石膏其结晶度变差,有利于后续胶凝材料的致密性和强度的提高。将此磷石膏制备的免烧砖保养28 d后,其含水率、吸水率、饱和系数、抗压强度分别为9.87%、10.66%、1.046、19.01 MPa。  相似文献   

4.
采用磷建筑石膏、P·O 42.5水泥、粉煤灰、矿粉、石粉及外加剂为原材料制备高强耐水型磷建筑石膏基无砂自流平砂浆。通过正交试验确定砂浆中胶凝材料的最优掺量,研究减水剂和可再分散性乳胶粉对砂浆性能的影响,并采用XRD及SEM对砂浆进行微观分析。结果表明,当磷建筑石膏、水泥、粉煤灰、矿粉及石粉质量比为73∶5∶5∶15∶2时,砂浆综合性能最优,28 d绝干抗压强度为33.0 MPa,软化系数为0.774。减水剂能够提高砂浆30 min的流动度、力学性能及耐水性能,但当掺量为0.30%(质量分数)时,会降低砂浆的后期强度。可再分散性乳胶粉会降低砂浆的流动性能及力学性能,但能提升砂浆的耐水性能。制备的磷建筑石膏基无砂自流平砂浆的性能满足《石膏基自流平砂浆》(JC/T 1023—2021)的要求,砂浆的28 d绝干抗折强度、28 d绝干抗压强度分别为12.0、45.9 MPa,软化系数高达0.886,吸水率低至2.8%。  相似文献   

5.
通过试验,研究了硅烷基聚合物防水粉末掺量对早强砂浆的流动性能、抗压强度、抗折强度、吸水性能及抗氯离子渗透性能的影响规律。早强砂浆是由普通硅酸盐水泥、硫铝酸盐水泥和石膏为胶凝材料制备而成,硅烷基聚合物防水粉末是由γ-氨丙基三乙氧基硅烷、聚乙烯醇和异丁基三乙氧基硅烷为主要原料制成。试验结果表明:硅烷基聚合物防水粉末掺量3.0%以内时,早强砂浆流动度和经时流动度损失符合规范要求;掺量为3.0%时,28 d龄期的早强砂浆试件吸水率最大降低58.9%,抗压强度和抗折强度未降低,抗氯离子渗透性能提高44.6%。  相似文献   

6.
冯洋  杨林  曹建新  王炳棋  陈龙 《硅酸盐通报》2020,39(9):2891-2897
采用磷石膏煅烧改性成的无水磷石膏(AP)、α型高强石膏(α-HH)、石英砂、外加剂等为原料制备磷石膏基自流平砂浆,分析探讨了煅烧温度、α型高强石膏掺量、胶砂比以及外加剂掺量对样品凝结时间、力学强度等性能指标的影响.结果 表明:磷石膏经500℃煅烧后,28 d抗压强度为13.6 MPa;增大α型高强石膏掺量有利于提高无水磷石膏力学强度;减小胶砂比能改善砂浆流动性能.采用42%无水磷石膏、28%α型高强石膏、30%石英砂、0.01% PE、0.2% MSF及0.1% HPMC配制的磷石膏基自流平砂浆,其性能指标满足JC/T 1023-2007《石膏基自流平砂浆》的要求.  相似文献   

7.
磷肥工业废弃物磷石膏和冶金工业废弃物富镁镍渣每年的排放量较大,由于二者具有胶凝活性较低和安定性差等缺点,导致其利用率较低。本文将原状磷石膏和富镁镍渣协同利用制备胶凝材料,研究了磷石膏-富镁镍渣基胶凝材料基础性能。通过对浆体的流动度、硬化体的力学性能,以及28 d吸水率和软化系数进行评价,为原状磷石膏和富镁镍渣协同综合利用提供实验支持。研究结果表明:磷石膏-富镁镍渣胶凝材料硬化体抗压强度28 d强度可达31.7 MPa,且耐水性好吸水率为2.46%,软化系数为0.91。将制得的磷石膏-富镁镍渣基胶凝材料硬化体与32.5普通硅酸盐水泥进行对比,性能相接近。  相似文献   

8.
以工业副产石膏磷石膏为主要胶凝材料,配合氧化钙改性、羧甲基纤维素HPMC、十二烷基硫酸钠(SDS)等外加剂与玻化微珠轻质骨料复配,制备磷石膏基保温砂浆。优化配合比,采用20~40目为主要保温骨料,骨胶比0.6∶1,控制稠度80 mm左右,添加SDS 0.5%情况下,干表面密度≤0.35 g/cm3,石膏基保温砂浆抗折强度能达到0.3 MPa,抗压强度0.7 MPa,导热系数小于0.08 W/(m·K),满足GB/T 20473-2006《建筑保温砂浆》标准要求,为磷石膏的有效利用提供一种有效途径。  相似文献   

9.
磷石膏粉煤灰改性生土材料试验研究   总被引:1,自引:0,他引:1  
以普通硅酸盐水泥为基础,添加磷石膏和粉煤灰对生土材料进行改性,制备自密实生土基墙体材料。通过测试生土改性材料试样的不同龄期的无侧限抗压强度、软化系数和导热系数,探讨了单掺水泥,复掺磷石膏及粉煤灰对生土改性材料抗压强度的影响;采用扫描电子显微镜(SEM)研究了改性生土材料试样的微观结构特征并分析了磷石膏、粉煤灰改性作用机理。结果表明:磷石膏和粉煤灰复合添加大幅度提高改性生土材料的无侧限抗压强度和耐水性。以0.50为基准水固比,10%硅酸盐水泥+8%磷石膏+15%粉煤灰改性生土材料的28d抗压强度可达为13.5MPa,软化系数为0.94,具有自密实特性。  相似文献   

10.
以磷建筑石膏粉为原料,复配CaO,开展了磷建筑石膏砂浆改性实验研究。结果表明:CaO掺量为2.0%时,聚羧酸G-50具有明显的减水效果,其最佳掺量为0.5%,水膏比为0.65;自制晶种可以明显提高砂浆制品的抗折强度和抗压强度,其最佳掺量为9%,得到的砂浆制品抗折强度为8.9 MPa,抗压强度为17.8 MPa,均高于国家标准。  相似文献   

11.
磷石膏基水硬性胶凝材料是近几年发展起来的一种以磷化工业副产物磷石膏为主要原料的新型建筑材料。与传统硅酸盐和矿渣水泥相比,磷石膏无活性不能直接作为胶凝材料,使用前必须对其进行改性。针对目前磷石膏基胶凝材料凝结时间长、早期强度低等缺点,研究了材料组成配比及外加剂对凝结时间和早期强度的影响,获得了磷石膏基胶凝材料的改性方法。当矿渣粉(KF)和硅基纳米粉末(WS)质量比为3∶17,水玻璃(NS)、富铝盐(NA)和高效聚羧酸减水剂(JS)的质量分数分别为0.3%、0.7%和0.3%时,可将其初凝时间控制在130~260 min、终凝时间控制在280~600 min;胶砂早期抗折强度3 d达3.5 MPa以上、7 d达5 MPa以上;早期抗压强度3 d达20 MPa以上、7 d达35 MPa以上。改性后的磷石膏基胶凝材料可替代25%~40%及以上普通硅酸盐水泥应用于建筑材料领域。  相似文献   

12.
张粤  王宏杰  杨林  陈鸿  曹建新 《硅酸盐通报》2022,41(8):2836-2843
选取四种不同粒径磷石膏,分别与机制砂、水泥及外加剂混合制备了湿拌砂浆,考察了磷石膏粒径对砂浆工作性及力学性能的影响,并通过XRD、TG-DSC、MIP以及SEM测试探究了磷石膏粒径对湿拌砂浆水化产物及微观结构的影响机理。结果表明,随着磷石膏粒径增大,湿拌砂浆工作性及力学性能呈先增大后减小的趋势,当掺入30%(质量分数)粒径为53~106 μm的磷石膏时,湿拌砂浆稠度损失19%,保水率为90%,28 d抗压强度为10.7 MPa,14 d拉伸黏结强度为0.25 MPa,可满足抗压强度大于10 MPa的技术指标要求。随着磷石膏粒径增大,磷石膏中的共晶磷含量减少,水泥水化过程受抑制程度减弱,砂浆中水化硅酸钙(C-S-H)生成量增多,且在远离CaSO4·2H2O颗粒的区域有大量C-S-H出现。然而,砂浆硬化体的孔体积却呈先减小后增大的趋势,当掺入30%(质量分数)粒径为53~106 μm的磷石膏时,砂浆的孔体积最小,仅为0.130 9 mL/g。磷石膏粒径范围适宜控制在53~106 μm,此时湿拌砂浆具有良好的工作性及力学性能。  相似文献   

13.
磷石膏胶凝活性差,阻碍了它在建材领域的大宗消纳。本文通过研究碱激发预处理后磷石膏物相和微观结构,以及用其制备高掺量免烧建材的抗压强度、物相和微观结构,从而获得磷石膏制备高掺量、高抗压强度免烧建材的工艺参数。结果表明:100 g磷石膏,碱激发剂为100 mL,在室温下预处理24 h后,磷石膏主晶相CaSO4·2H2O的晶粒变小,结晶度降低,通过观察微观结构发现硫酸钙颗粒变大,细小颗粒量大幅降低,从而提高了其胶凝活性。当磷石膏掺入量为80%(质量分数)时,与未处理磷石膏相比,所制备的免烧建材保养7 d、28 d和浸水后的抗压强度均明显提高,分别为13.79 MPa、18.22 MPa和11.44 MPa,其微观形貌显示硫酸钙颗粒间没明显边界,几乎融为一体,致密度极高,对材料强度的增加十分有利。  相似文献   

14.
权娟娟  张凯峰  王可娜 《硅酸盐通报》2017,36(12):4033-4037
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多.  相似文献   

15.
通过吸水率、软化系数、抗折强度和抗压强度试验,并结合傅里叶红外光谱和扫描电子显微镜测试,探究不同长度和掺量的苎麻纤维对苎麻纤维增强磷建筑石膏复合材料耐水性能和力学性能的影响。研究结果表明,掺入适量苎麻纤维可改善苎麻纤维增强磷建筑石膏复合材料的耐水性能和力学性能,以及提高复合材料的延性。掺入0.5%(体积分数,下同)的10 mm苎麻纤维时,复合材料的软化系数达到最大,较空白组提高20.0%。苎麻纤维的掺入能有效提高复合材料的抗折强度,28 d时,掺入1.5%的10 mm苎麻纤维试样较空白组抗折强度提高39.5%。掺入小于20 mm的苎麻纤维会降低复合材料的抗压强度,掺入不超过1.5%的30 mm苎麻纤维可提高复合材料的抗压强度,28 d时,掺入1.5%的30 mm苎麻纤维试样较空白组抗压强度提高10.1%。苎麻纤维在复合材料基体内会发生水解,随龄期的增长水解程度加重,表面逐渐粗糙。  相似文献   

16.
于星星  薛善彬  张鹏  郭旗 《硅酸盐通报》2022,41(10):3377-3385
对不同龄期、水灰比的海水海砂砂浆(SSM)试块开展了抗压、抗折强度测试,通过称重法研究了水灰比、龄期及水温对SSM毛细吸水性能的影响,并基于低场核磁共振技术研究了SSM力学、毛细吸水性能与微观结构的关系,最后将基于多孔介质毛细管吸水模型计算的代表性毛细管直径与基于低场核磁横向弛豫时间估算的砂浆孔隙直径进行了对比分析与讨论。结果表明,SSM前3天强度发展较快,水灰比为0.4的SSM试块养护3 d时的抗压、抗折强度分别为养护28 d时的56.2%、70.3%。当水温从20 ℃升至40 ℃时,水灰比为0.4、养护28 d的SSM试件毛细吸水系数增大1.2倍。长期一维吸水过程中,试件单位面积累计毛细吸水量与吸水时间的0.25次幂呈线性关系。随龄期增长,SSM试件孔隙率呈减小趋势。基于毛细管吸水模型得出的代表性毛细管直径与基于低场核磁横向弛豫时间估算的砂浆孔隙直径较为接近。  相似文献   

17.
为实现磷石膏的资源化利用,制备了以原状磷石膏为主要原料、赤泥为碱性激发剂的矿井充填材料,并分析了高效减水剂掺量、水泥掺量、赤泥掺量对其性能的影响。实验结果表明,水灰质量比为0.2,聚羧酸盐减水剂掺量为0.5%(质量分数)时,浆料的初始流动度约为230 mm,满足充填材料性能要求;水泥掺量从0增加到10%时,28 d抗压强度从2.03 MPa提升至10.75 MPa,初始流动度从180 mm增加到235 mm,强度保持率从0.39提升至1,表明水泥掺量直接影响充填材料的强度、流动性及耐水性能;赤泥掺量从0增加到5%时,28 d抗压强度提升了50%,强度保持率从0.82提升至1,激发作用明显,对材料的流动性有相反的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号