共查询到17条相似文献,搜索用时 390 毫秒
1.
为减少水面蒸发非线性、复杂性和不稳定性等特征带来的预测误差,基于\"分解-预测-重构\"的策略,提出VMD-LSTM水面蒸发预测模型.该模型耦合长短期记忆神经网络(LSTM)与变分模态分解法(VMD),利用变分模态分解将水面蒸发及其主要影响因素分解为相同数量的子模态分量以降低数据的非平稳性,将对应子模态分量作为长短期记忆神经网络的输入,构建VMD-LSTM深度神经网络混合模型,并应用于三峡水库巴东站的月水面蒸发量预测.结果表明:VMD-LSTM模型较其他模型具有预测精度更高、峰谷值拟合更优的特点,与单一LSTM模型相比,率定期均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别下降了54%和48%,而纳什效率系数(NSE)提升了11%.随着预见期的增加,模型的预测精度会逐渐降低但预测效果保持良好,当预见期从1 个月增至7 个月时,率定期NSE由0.97 降至0.84.研究成果可为三峡水库水资源合理利用与科学管理提供理论支撑. 相似文献
2.
为了提高径流预测的精度,文中提出了一种基于变分模态分解算法(VMD)的长短期记忆神经网络(LSTM)预测模型。文中通过对沙里寨水文站2010年至2019年的流量数据进行预测,并与其他模型对比预测效果。结果表明,VMD-LSTM模型能够有效提高径流的预测稳定性和精度。 相似文献
3.
径流预报是缓解洪水的一种重要方法。基于1978-2010 年的水文资料,结合长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了灞河流域径流预测模型,并且评价了模型对同一流域不同特征水文站的差异及不同季度的预测效果差异。结果表明:不同神经元的组合,对LSTM 模型预测效果会产生影响,利用最佳的神经元组合可以更加有效预测径流量变化,大峪河大峪(三)站的最佳组合为第一层神经元128 个,第二层神经元32 个;灞河罗李村(四)站的最佳组合为第一层神经元128 个,第二层神经元8 个;灞河马渡王站的最佳组合为第一层神经元8 个,第二层神经元2 个。不同站点的LSTM 最佳模型都能较为有效的预测三个水文站2006-2010 年的径流量变化,其中大峪河大峪(三)站效果最佳,其余两个站点效果相对较差。LSTM 模型对各个季度的预测效果有差异,各个站点大部分第三季度的均方根误差都较大,而对第一、四季度的径流预测相对较准确。 相似文献
4.
为了弱化径流时间序列的非线性和非平稳性,提高不同预见期的日径流预测精度,提出了一种新的VMD-PSO-LSTM多步预测组合模型。首先采用变分模态分解(VMD)方法将原始日径流序列分解为子序列,通过粒子群优化算法(PSO)对长短期记忆(LSTM)模型参数进行优化,对各子序列建立PSO-LSTM模型,各分量的预测值重构集成预测结果。将VMD-PSO-LSTM模型应用于黄河下游花园口和利津站的日径流多步预测,采用Nash sutcliffe效率系数(ENS)、相关系数(R)和均方根误差(ERMS)3个定量评价指标对模型预测结果进行评价。结果表明:在预见期为1、2、3 d的情况下,两个测站的Nash sutcliffe效率系数和相关系数均在0.90以上。与CEEMD-PSO-LSTM和PSO-LSTM模型的预测结果对比表明,该模型能够有效提高日径流多步预测精度,是一种高效稳定的径流预报模型。 相似文献
5.
针对传统径流预测模型对月径流序列尖峰点预测精度不足的问题,文章提出了一种VMD-EEMD-CNN-LSTM混合预测模型。首先,对原始月径流序列进行变分模态分解(VMD)处理,得到具有有限带宽的本征模态分量(VMF)和较高复杂性的残差项(Res)。然后通过集合经验模态分解(EEMD)对Res进行二次分解,有效挖掘原始径流的隐藏信息。把各分量作为卷积神经网络(CNN)-长短期记忆网络(LSTM)组合预测模型的输入,最后对各预测结果进行叠加重构,得到最终的结果。以乌江流域洪家渡水电站实测月径流数据为例,结果表明:VMD-EEMD-CNN-LSTM模型具有更高的精确度,能有效提高对月径流序列尖峰点的预测精度。 相似文献
6.
准确可靠的月径流预报是流域水旱灾害防治及水资源合理配置的重要依据。原始径流时间序列包含多种频率成分,将时间序列数据分解预处理技术和机器学习模型相结合的混合模型已被用于捕捉径流动态过程。然而,将数据分解技术直接应用于整个时间序列是一种不切实际的方法,会导致部分信息从测试阶段传输到模型的训练过程中。为此,设计了一个用观测数据更新历史样本的自适应动态分解策略,提出基于自适应变分模态分解和长短期记忆网络的分解-预测-集成月径流预测混合模型。首先,采用自适应分解策略对径流时序数据进行变分模态分解,得到不同频率成分的子序列;其次,为每个分解子序列构建长短期记忆神经网络径流预测模型,并采用贝叶斯优化算法优选模型超参数;然后,将子序列的预测结果集成得到径流的最终预测结果;最后,以金沙江上游石鼓水文站月径流预报为研究实例,对比传统的分解策略(“捆绑分解”)和分解方法(离散小波变换和集成经验模态分解),验证所提混合模型的有效性和可行性。结果表明,所提混合模型在数据分解预处理中避免了引入未来信息,并能够进一步提升径流预报精度。 相似文献
7.
为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游的控制总站——王奔水文站2012年~2021年逐月径流过程,并与鲸鱼算法(WOA)以及灰狼算法(GWO)优化的长短期记忆神经网络进行模型比较。结果表明,EEMD-NGO-LSTM耦合预测模型的超参数迭代速度最快,精度最高,预测结果最接近实测值,其决定系数R2为0.864 3。而后采用CMIP6气候模式(SSP126情景)下的2030年的降水、气温数据输入模型进行预测,在气温上升1℃,降水不变的情景下,年径流量将增加6.61%;在降水升高5%,气温不变的情景下,年径流量将增加6.95%;在气温上升1℃、降水升高5%的情境下,年径流量将增加22.16%。 相似文献
8.
《人民珠江》2021,42(3)
为提高径流预测精度,提出基于经验模态分解(EMD)和长短期记忆(LSTM)神经网络、自适应神经模糊推理系统(ANFIS)相结合的径流预测模型。通过EMD将原始径流序列分解成多个更具规律的分量序列,利用自相关函数法(AFM)和虚假最邻近法(FNN)对每个分量序列进行相空间重构,确定输入、输出向量,建立EMD-LSTM-ANFIS预测模型,并构建EMD-LSTM、EMD-ANFIS、LSTM、ANFIS作对比模型,利用建立的5种模型对云南省龙潭站年径流进行预测及对比分析。结果表明:EMD-LSTM-ANFIS模型对实例年径流预测的平均相对误差为3.18%,平均相对误差较EMD-LSTM、EMD-ANFIS、LSTM、ANFIS模型分别降低55.0%、65.2%、68.1%、78.4%,具有更高的预测精度和更强的泛化能力。EMD-LSTM-ANFIS模型用于径流预测是可行和可靠的。 相似文献
10.
为了提高径流预测的精度,提出了一种用以解决径流预测等问题的组合预测模型,此模型由变分模态分解(VMD)、长短期记忆网络(LSTM)和自回归移动平均(ARMA)组成。为了降低入库流量的复杂度,利用VMD算法将径流数据分解为3个不同频率的模态分量。低频的模态分量继承了数据的时间特性,可以通过构建LSTM预测模型处理;而2个高频序列是平稳的时间序列,可以通过搭建ARMA预测模型处理。将3个子序列的预测结果进行叠加,最终得到径流的预测结果。采用湘江支流的东江水文站2020年的逐小时流量数据进行流量预测,对比试验和其他算法结果表明:所构建的模型可以有效提高水文预报的精度。 相似文献
11.
准确的径流预测对于流域防洪减灾、农业灌溉、水库调度等具有重要意义。针对径流序列具有较强的非线性和非平稳性特征,提出一种月径流预测混合模型VMD-(CNN-LSTM, ELMAN)。首先运用VMD将径流序列分解为多个模态分量,并计算各个模态分量的样本熵值(SE),将其划分为高频和中低频分量;然后运用CNN-LSTM模型预测高频分量,运用ELMAN模型预测中低频分量;最后将预测结果相加得到最终预测结果。将模型应用于黄河流域中下游段白马寺和黑石关水文站的月径流预测,并与CNN-LSTM、ELMAN、VMD-CNN-LSTM模型的预测结果进行对比与评价。研究结果表明:本文模型预测结果的NSE值均大于0.99,优于其他模型,表明VMD-(CNN-LSTM, ELMAN)模型具有较高的预测精度,可应用于实际研究区的径流预测。 相似文献
12.
为进一步提高月降水量预测精度,提出了基于小波分解(WD)和郊狼优化(COA)算法的长短期记忆神经网络(LSTM)降水量预测模型(WD-COA-LSTM)。首先用小波分解对时间序列进行预处理,消除序列的非平稳性,得到1个低频序列和3个高频序列;然后通过郊狼优化算法对神经网络(LSTM)模型进行参数优化;最后将各子序列预测值叠加得到月降水量预测值。将提出的模型应用于洛阳市栾川县白土镇和洛宁县故县镇两个雨量站的月降水量预测中,并与LSTM、COA-LSTM、WD-LSTM模型预测结果进行对比。结果表明:提出的WD-COA-LSTM模型的预测精度最高,说明小波分解和郊狼优化算法能有效加强LSTM模型预测的精度和泛化能力,为月降水量的预测提供了一种新的途径。 相似文献
13.
由于岩溶地下水具有强烈的非线性及非平稳波动特征,水位预测结果容易产生较大误差。针对岩溶地下水水位预测精度较差的问题,提出一种EMD-LSTM耦合模型,首先采用经验模态分解(EMD)将趵突泉岩溶地下水水位分解为5个分量(4个本征模函数项和1个残余项),以此消除水位数据的非平稳波动性;同时构建长短期记忆(LSTM)神经网络模型,并将与地下水水位动态变化密切相关的降水量(表征含水层补给项)和月平均气温值、月最高气温值、月最低气温值、水汽压值(表征含水层排泄项)作为输入项分别对5个分量进行预测,最终将分量预测结果累加获得地下水水位预测值。结果表明:EMD能够显著消除岩溶地下水水位的非平稳波动特征;EMD-LSTM耦合模型可有效提高岩溶地下水水位的预测精度,其均方根误差相比于LSTM神经网络模型、ARIMA模型分别减小了27.86%和59.94%。总体来说,本文所提出的EMD-LSTM耦合模型具有较强的可靠性和稳定性,可为岩溶地下水水位的精确预测提供借鉴。 相似文献
14.
水质预测是水污染防治的重要一环,为提高水质预测的精度,研究随机森林算法(RF)与长短时记忆神经网络(LSTM)相结合的预测方法.以桃林口水库水质监测数据为例,采用RF算法分别筛选出影响高锰酸盐指数(CODMn)、氨氮(NH3—N)、总氮(TN)和总磷(TP)浓度变化的关键特征,在此基础上构建基于RF-LSTM的水质预测... 相似文献
15.
基于GRACE和GRACE-FO卫星陆地水储量遥感数据,采用长短期记忆(LSTM)神经网络模型,结合水量平衡方程和全球陆地数据同化系统(GLDAS)重建GRACE与GRACE-FO间的陆地水储量变化量,分析黄河流域2002年4月至2020年3月陆地水储量变化特征,探究影响陆地水储量变化的环境因子。结果表明:LSTM模型可以有效填补GRACE与GRACE-FO间的陆地水储量变化量;黄河流域陆地水储量呈明显下降趋势,上、中、下游下降趋势依次增大,陆地水储量与地下水储量的变化特征高度相关;黄河流域上、中、下游年陆地水储量变化量与年降水量和年干燥度指数呈极显著相关关系,表明黄河流域陆地水储量变化受到降水和蒸散发的影响。 相似文献
16.
17.
渗压监测是土石坝渗流安全评价的重要内容之一。由于渗压受到诸多外界因素的影响,测点的渗压值时间序列往往存在非平稳性、局部突变等特点,为此基于“分解-重构-组合”的思想构建了土石坝渗压预测的EEMD-LSTM-ARIMA模型。首先采用集合经验模态分解(EEMD)对时间序列特征进行提取,根据长短期记忆神经网络(LSTM)对提取出的特征分量进行预测,同时结合差分自回归移动平均方法(ARIMA)进行残差修正,组合LSTM和ARIMA的预测结果,重构得到改进预测模型。以某深厚覆盖层上的土石坝工程为例,选取主河床坝体防渗墙后2个典型测点的实测渗压值序列为研究对象进行应用验证。结果表明:相较于单一的LSTM模型和ARIMA模型,改进模型的平均绝对误差MAE、均方误差MSE、均方根误差RMSE均为3种模型中的最小值,预测精度明显优于另外2种模型,该模型为土石坝渗压的精确预测分析提供了新途径。 相似文献