首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
BP神经网络在协定法麦汁理化指标预测中的应用   总被引:1,自引:0,他引:1  
建立了协定法麦汁浊度、糖化力、黏度以及浸出率的BP神经网络预测模型,希望通过此模型能够预测在不同设定工艺变量条件下协定麦汁的主要理化指标.选取8组数据进行BP神经网络的训练仿真,并用2组未参加训练的数据进行验证.在均方差为0.001的条件下,网络于242次训练后收敛,模型训练的最大相对误差为2.58%,预测值的最大相对误差为10.08%,表明该模型具有良好的预测和仿真能力.  相似文献   

2.
BP神经网络预测废水处理过程的研究   总被引:1,自引:0,他引:1  
通过在实验室条件下进行追纸废水处理试验取得的数据对BP神经网络进行训练,建立了造纸废水处理过程的网络模型。该网络模型仿真实际废水处理过程的结果表明,BP神经网络具有很强的学习能力。利用BP神经网络模型实现了对造纸废水处理过程的预测,平均相对误差为19%,表明网络泛化能力不是很好。经过动态训练的BP神经网络模型能够比较准确的预测造纸废水处理过程,平均相对误差为1.9%,大大优于未经动态训练的网络模型。  相似文献   

3.
采用响应曲面分析法对影响小麦啤酒麦汁α-氨基氮含量的4个主要糖化工艺参数即小麦芽比例、水料比、52℃保温时间和65℃保温时间进行优化,建立了各因素对麦汁α-氨基氮含量影响的数学模型。结果表明,最佳糖化工艺参数为:小麦芽比例为42%,水料比为4.6,52℃保温时间为24min,65℃保温时间为71min;该优化参数下得到的麦汁α-氧基氮含量为253mg/L以上。  相似文献   

4.
在啤酒发酵过程中,麦汁的好坏会直接影响啤酒的品质。为了探究不同的糖化工艺对发酵后酒品质的影响,运用代谢组学的方法,分析了不同糖化条件对麦汁成分造成的差异,从代谢水平上解释了啤酒发酵过程中不同糖化工艺产生的麦汁对酿酒酵母代谢途径的影响。通过对质谱检测后所得的数据经过进行主成分分析和偏最小二乘判别分析,确定了不同糖化工艺产生的麦汁会影响酿酒酵母的氨基酸代谢、有机酸代谢以及脂质和脂肪酸代谢等代谢途径;主要涉及精氨酸的生物合成,苯丙氨酸、酪氨酸和色氨酸生物合成,缬氨酸、亮氨酸和异亮氨酸生物合成,甘氨酸、丝氨酸和苏氨酸代谢,D-氨基酸的代谢,赖氨酸降解,以及脂肪酸生物合成等途径,这些途径对啤酒风味有较大影响,研究结果为啤酒中风味物质的调控提供了一定的理论指导。  相似文献   

5.
为实现对油炸外裹糊鱼块的丙烯酰胺含量的预测,采用响应面试验设计收集数据,建立以黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、大豆油品质、油炸温度、油炸时间为输入值,油炸外裹糊鱼块的丙烯酰胺含量为输出值的反向传播人工神经网络(back propagation artificial neural network,BP-ANN),预测外裹糊鱼块深度油炸过程丙烯酰胺含量的变化,并用训练集拟合,测试集评估模型的预测能力。结果显示,黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、油炸温度、油炸时间对油炸外裹糊鱼块的丙烯酰胺含量均有显著影响,大豆油品质对油炸外裹糊鱼块中丙烯酰胺含量影响不显著。训练后的BP-ANN模型的相关系数R值为0.997,拟合良好,有很强的逼近能力;模型对新数据预测的误差较小,最大相对误差为5.34%,最小相对误差为0.12%,表明BP-ANN模型能准确预测油炸外裹糊鱼块的丙烯酰胺含量。  相似文献   

6.
浅谈麦汁糖类组成对啤酒发酵度的影响   总被引:1,自引:1,他引:1  
本文从酵母吸收糖类顺序的生理特性,阐述增加麦汁中葡萄糖等单糖含量对提高发酵度的重要性;并从10°P干啤酒中麦汁糖类组成的分析情况进一步说明其副发酵度的影响。我们通过添加淀粉酶及调整糖化工艺,提高了麦汁中可发酵性糖含量,改变了麦汁中葡萄糖、麦芽糖、麦芽三糖的比例,使三者比例约为65:23:12,而普通啤酒一般为10~15:67~72:18~22,显然增加了葡萄糖含量。并从发酵中证实麦汁糖类组成对提高发酵度是关键要素,使用普通酵母也能生产高发酵度的干啤酒。  相似文献   

7.
啤酒厂糖化工序的热能消耗约占整个厂热能消耗的50%。本文通过一个典型的60千升/批次麦汁糖化设备为例,分析糖化工序的蒸汽消耗状况。一、工艺条件糖化设备采用六器组,8批次/天~10批次/天;麦汁浓度12°P;大米、麦芽采用湿粉碎;糖化、糊化采用底部进料;麦汁煮沸采用低压动态工艺;回收煮沸产生的二次蒸汽,用以预热从暂存槽到煮沸锅的麦汁。  相似文献   

8.
啤酒酿造过程中有机酸的研究   总被引:3,自引:0,他引:3  
向阳  李崎  顾国贤 《酿酒科技》2005,(10):51-54,57
研究不同的糖化工艺对麦汁中有机酸含量的影响。通过改变原料状况(不同的辅料比、粉碎度)、糖化水pH、糖化温度、糖化时间等工艺参数,发现麦汁中的有机酸主要来自麦芽呼吸产生的酸,糖化过程中的酶解作用几乎不产生有机酸,且麦芽原始酸和总有机酸含量之间具有较好的线性关系(R^2=0.943)。麦汁煮沸时添加酒花和钙离子,可以使麦汁中的有机酸含量下降10%。  相似文献   

9.
为提高啤酒的抗氧化力以及改善其风味稳定性,研究糖化工艺对麦汁总酚含量和抗氧化力的影响。结果表明:糖化过程中,麦汁的总酚含量、DPPH自由基清除活性和还原力总体呈增加趋势。适当提高蛋白质休止温度,延长休止时间,可显著提高终麦汁的总酚含量与抗氧化力。糖化温度与时间对麦汁总酚含量和抗氧化力影响显著,其中糖化时间较温度的影响大。此外,总酚含量与麦汁抗氧化力评价指标之间具有显著的正相关性,说明酚类是麦汁的主体抗氧化物质。这些结果均表明糖化阶段麦汁中抗氧化物质是从麦芽中逐渐释放,而非生成的。本文为改进糖化工艺,提高麦汁的抗氧化力提供了理论依据。  相似文献   

10.
为提高碎米的综合利用程度和低聚异麦芽糖中异麦芽糖、潘糖和异麦芽三糖的含量,采用碎籼米淀粉酶法制备低聚异麦芽糖。以低聚异麦芽糖中异麦芽糖、潘糖和异麦芽三糖含量为考察指标,采用单因素实验和正交实验对糖化转苷工艺进行优化,确定最佳工艺参数为籼米淀粉液化液DE值为12,α-葡萄糖转苷酶用量为1.0U/(g淀粉),糖化转苷p H5.0、糖化转苷温度55℃、糖化转苷时间36h,在此条件下,低聚异麦芽糖中异麦芽糖、潘糖和异麦芽三糖的含量为(37.86±0.31)%,达到了中国发酵工业协会拟定的低聚异麦芽糖质量标准。  相似文献   

11.
The cause of the high glucose to maltose ratio in sorghum malt worts was studied. Mashing temperature and pH strongly affected both the amount of glucose and the proportion of glucose relative to total fermentable sugars. The relative proportion of glucose was higher when mashing was performed. at pH 4.0, close to the pH optimum for sorghum alpha-glucosidase, than at the natural pH of the mash (pH 6.0–5.5). Mashing according to the EBC procedure using an enzymic malt extract with pre-cooked malt insoluble solids producing a wort containing maltose and glucose in an approximately 4:1 ratio, whereas mashing with a malt extract without pre-cooking the malt insoluble solids resulted in a wort with approximately equal amounts of maltose and glucose. Both treatments gave the same quantity of total fermentable sugars and amount of wort extract. Sorghum alpha-glucosidase was confirmed to be highly insoluble in water. All or virtually all activity was associated with the insoluble solids. Hence, it appears that the high amount of glucose formed when sorghum malt is mashed conventionally is due to alpha-glucosidase activity. Pre-cooking the malt insoluble solids inactivates the alpha-glucosidase, preventing the hydrolysis of maltose to glucose.  相似文献   

12.
<正> 前言 双醪糖化法,就是糖化过程中具有两种原料醪液;辅料醪和麦芽醪,辅料醪中添加少量的麦芽粉或酶制剂以帮助辅料淀粉液化的顺利进行。由于混合醪是杏具有倒醪煮沸的不同,这种糖化方法又可分为两类:双醪煮出糖化法和双醪浸出糖化法。国内各啤酒厂在生产下面发酵啤酒中,普遍采用了前种糖化方法(即二次糖化法),虽然它的原料利用率较高,但工艺过程较复杂,酶的反应条件不很合理,倒醪煮沸费时,热能消耗较多,且麦芽汁色度较  相似文献   

13.
The aim of this research was to investigate the relationship between starch composition in barley and its malted counterpart alongside malt enzyme activity and determine how these factors contribute to the fermentable sugar profile of wort. Two Australian malting barley varieties, Commander and Gairdner, were sourced from eight growing locations alongside a commercial sample of each. For barley and malt, total starch and gelatinisation temperature were taken, and for malt, α‐ and β‐amylase activities were measured. Samples were mashed using two mashing profiles (infusion and Congress) and the subsequent wort sugar composition and other quality measures (colour, original gravity, soluble nitrogen) were tested. Variety had no significant (<0.05) effect on any barley, malt, enzyme or wort characteristics. However, growing location impacted gelatinisation temperature, colour, malt protein content and original gravity. The gelatinisation temperature in malt samples was higher, by ~0.8°C, than in the equivalent barley sample. Several malt samples, even with protein contents <12.0%, had gelatinisation temperature >65°C. The fermentable sugars measured in the malt prior to mashing showed a higher proportion of maltose than glucose or maltotriose. In addition, there were significant differences in the amount of sugar produced by each mashing method with the high temperature infusion producing a higher amount of sugar and proportionally more maltose. There is scope for further research on the effect of genetics and growing environment on gelatinisation temperature, mash performance and fermentable sugar development. Routinely measuring gelatinisation temperature and providing this information on malt specification sheets could help brewers optimise performance. © 2019 The Institute of Brewing & Distilling  相似文献   

14.
The impact of using different combinations of unmalted barley, Ondea Pro® and barley malt in conjunction with a 35% rice adjunct on mashing performance was examined in a series of small scale mashing trials. The objective was to identify the potential optimal levels and boundaries for the mashing combinations of barley, Ondea Pro®, malt and 35% rice (BOMR) that might apply in commercial brewing. Barley and malt samples used for the trials were selected from a range of Australian commercial barley and malt samples following evaluation by small‐scale mashing. This investigation builds on previous studies in order to adapt the technology to brewing styles common in Asia, where the use of high levels of rice adjunct is common. Mashing with the rice adjunct, combined with differing proportions of barley, Ondea Pro® and malt, resulted in higher extract levels than were observed for reference mashing, using either 100% malt reference or 100% barley reference and Ondea Pro® enzymes. Synergistic mashing effects between barley, Ondea Pro® and malt were observed for mash quality and efficiency parameters, particularly wort fermentability. The optimum levels of barley in the grist (with the relative level of Ondea Pro®) were assessed to be in the range 45–55% when paired with 10–20% malt and 35% rice. When the proportion of malt was reduced below 10% of the grist, substantial reductions in wort quality were observed for wort quality parameters including extract, lautering, fermentability, free amino nitrogen and haze. Extension of this new approach to brewing with rice adjuncts will benefit from further research into barley varietal selection in order to better meet brewer's quality requirements for the finished beer. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

15.
The aim was to establish if a substantial increase in hydrophobic polypeptides could be achieved during high gravity mashing. When worts with gravities ranging from 5–20°P were analysed for hydrophobic polypeptide content it was found that there was no appreciable increase in hydrophobic polypeptide levels. Remashing of the spent grains from low and high gravity mashes demonstrated that this resulted from inefficient extraction of hydrophobic polypeptide levels during the mashing process. For example, wort produced from remashed high gravity spent grains contained 150 mg/L hydrophobic polypeptides compared to only 10 mg/L in the low gravity remashed spent grains. Experiments were conducted, employing standard mashing techniques, in an attempt to increase the extraction of hydrophobic polypeptides during high gravity mashing. Thus the use of gypsum, proteolytic stands, varying liquor to grist ratios and wheat malt addition were all investigated for their effect on hydrophobic polypeptide extraction during high and low gravity mashing. Wort analysis demonstrated that none of the techniques employed had a significant effect on hydrophobic polypeptide extraction. When wort from remashed spent grains was used as mashing in liquor for a fresh mash and the resultant worts analysed for hydrophobic polypeptides it was observed that no increase in hydrophobic polypeptide extraction was achieved. For example, wort from the remashed high gravity spent grains, containing 140 mg/L hydrophobic polypeptides, when used as mashing-in liquor, produced no increase in hydrophobic polypeptide levels in the resultant high gravity wort (230 mg/L) when compared to a high gravity wort produced using distilled water as mashing-in liquor (255 mg/L). It is therefore concluded that a saturation point has been reached and no more hydrophobic polypeptides can be extracted during mashing regardless of the procedures employed.  相似文献   

16.
Starch from malt and solid adjuncts provides the majority of fermentable sugars for fermentation. However, there is no current data on the variation in starch structure (particularly long chained amylose) and its impact on the final wort composition of fermentable sugars, specifically maltose. This is the first study to report variation in amylose structure from barley malt and rice used as an adjunct and how this impacts the production of maltose. We compared four commercial malts with two rice adjuncts mashes, in solid and liquid additions, with an all‐malt mash used as a control. All combinations of malt and rice adjuncts were tested under two grist‐to‐liquor (G:L) ratios (1:3 and 1:4) in a 65°C ramped mash. After mashing, the wort original gravity and maltose concentration were measured. The commercial malts had different malt quality but very similar gelatinisation temperatures (~65°C). The malts varied in starch and amylose contents but had only minor variations in average amylose chain lengths. The two rice adjuncts also had similar average amylose chains lengths, but quite different amylose contents, and hence different gelatinisation temperatures. The results showed that liquid adjunct mashes had higher original gravity and maltose concentration for both G:L ratios. However, there was no consistent result in original gravity or maltose between G:L ratio or adjunct type, suggesting interactions between each malt and rice adjunct. Knowing amylose chain length could improve understanding of the potential maltose levels of the sweet wort prior to fermentation. © 2018 The Institute of Brewing & Distilling  相似文献   

17.
A three‐factorial experiment with a level of confidence of P < 0.05 was performed to study fermentable carbohydrate depletion and ethanol production during 144 h fermentations of lager beers produced with barley malt (BM), sorghum malt (SM), refined maize (MZ) or waxy sorghum (WXSOR) grits treated during mashing with or without amyloglucosidase (AMG). The percentage glucose, maltose and maltotriose, based on total fermentable carbohydrates for the BM wort was 20, 68 and 13% and for the SM wort 35, 48 and 17% respectively. Treatment with AMG increased wort glucose from 9.3 to 24.5 g/L wort and total fermentable sugar equivalents, expressed as g glucose/L, from 59.2 to 72.6 g/L wort. The SM worts had approximately 50% more glucose and 40% less initial maltose content respectively compared to the BM worts. The WXSOR grits produced worts and beers with similar properties to those produced from the MZ adjuncts. AMG addition led to a >2.5 fold increment in wort glucose and 23% in total fermentable carbohydrate content. Linear regression analysis determined that the consumption rate of fermentable carbohydrates during fermentation followed first order reaction kinetics. Depletion times to reach 50% of the initial concentrations of glucose, maltose and maltotriose were 49, 128 and 125 h, respectively, clearly indicating that the fermenting yeast preferred glucose. Maltose and maltotriose depletion times of the AMG treated worts were significantly faster and lower, respectively, when compared with the untreated worts. At the end of the fermentation, the BM beers contained higher ethanol levels (5.1% v/v) than the SM beers (3.9% v/v). For AMG treated beers, no significant differences in ethanol content were observed among samples mashed with BM and beers produced from SM and MZ grits. The results demonstrated that AMG could be used to increase the initial concentration of glucose and total fermentable carbohydrates thus decreasing dextrin levels, especially from sorghum mashes.  相似文献   

18.
以大麦芽、小麦芽为原料,麦汁浸出物收得率为评价指标,在单因素试验基础上,利用响应面法对麦汁糖化工艺进行优化研究。结果表明,最佳的糖化工艺为小麦芽添加量为42.0%,水料比为4∶1(mL∶g),37 ℃投料保温10 min,52 ℃糖化保温45 min,65 ℃糖化保温68 min,78 ℃保温10 min。在此优化糖化工艺条件下,测得麦汁浸出物得率为79.63%,比未优化前提高8.2%。麦汁糖化液中α-氨基酸态氮含量为272.01 mg/L,还原糖含量为9.14 g/100 mL,可溶性氮含量为1.41 g/L。  相似文献   

19.
外加酶法酿制低糖啤酒糖化工艺的研究   总被引:1,自引:0,他引:1  
以普鲁兰酶Promozyme120L为重点,综合分析了外加酶糖化过程中影响麦汁总还原糖量和糖组成的各种因素,如各酶制剂的用量、糖化温度、料水比、物料比及各因素之间的相互作用等,确定了一套最优的糖化工艺方案。所得麦芽汁浸出率高、色度浅、粘度低、还原糖含量高;经过高效液相色谱分析(HPLC)表明,其糖组成合理;经过十天的发酵,发酵度达82.2%,酒精分为6.455%(W/W)。  相似文献   

20.
研究了11种进口麦芽和18种国产麦芽中超氧化物歧化酶(SOD)活性的差异以及与协定麦汁还原力之间的关系。以甘啤-3号麦芽为对象,采用7种恒温糖化工艺考察了糖化温度对2者的影响。结果表明,不同品种麦芽中,SOD的差异比较明显(1205.6~2126.0U/g),而且麦芽的SOD活性与协定麦汁的还原力之间存在显著的正相关性(相关系数r=0.898,P<0.01);SOD活性随着糖化温度的升高而逐渐降低,55℃恒温糖化60min后有53.22%的酶活残存;当糖化温度升高到65℃时,SOD的活性大幅度下降,30min后仍有25.45%的酶活残存;糖化温度为70℃和80℃时SOD下降到极低的活性;麦汁的还原力随着糖化温度的升高而升高,80℃恒温糖化100min后麦汁的还原力高达3.75mmol/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号