首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
OBJECTIVES: To study the expression of preproendothelin-1 messenger RNA (mRNA) in tissue after Escherichia coli lipopolysaccharide challenge and to evaluate the possible effects of betamethasone both regarding endothelin-1 production as well as hemodynamic and vascular effects during E. coli lipopolysaccharide infusion in pigs in vivo. DESIGN: Prospective trial. SETTING: Laboratory at a university medical center. SUBJECTS: Ten domestic pigs, weighing 18 to 25 kg. INTERVENTIONS: Anesthetized pigs were given continuous infusions of E. coli lipopolysaccharide (15 micrograms/kg/hr for 3 hrs), with or without prior treatment with betamethasone (0.5 mg/kg im 12 hrs before the start of the surgical preparation and 0.5/kg iv at the start of the preparation). MEASUREMENTS AND MAIN RESULTS: The E. coli lipopolysaccharide infusion evoked the characteristic cardiovascular changes observed in septic shock: decreased mean arterial pressure and cardiac output; increased heart rate and increased pulmonary vascular resistance. Large increases in both arterial plasma concentrations of endothelin-1-like immunoreactivity, as well as preproendothelin-1 mRNA concentrations in tissues, were also observed during the E. coli lipopolysaccharide infusion. Treatment with betamethasone significantly attenuated the E. coli lipopolysaccharide-induced increase in endothelin-1 plasma concentrations, whereas the increased mRNA concentrations were only slightly affected. Furthermore, betamethasone treatment also affected cardiovascular parameters, with significant attenuation of the E. coli lipopolysaccharide-induced increase in heart rate and a higher cardiac output after 60 mins of the E. coli lipopolysaccharide infusion. The urine production, which was markedly decreased during the E. coli lipopolysaccharide infusion, was significantly higher in the betamethasone-treated group compared with the control group. CONCLUSIONS: The present results indicate that the increased concentrations of endothelin-1-like immunoreactivity that are observed in septic shock may have negative effects on both cardiovascular parameters as well as renal function, which is in agreement with a possible role for endothelin-1 in the pathogenesis of septic shock.  相似文献   

2.
OBJECTIVE AND DESIGN: The role of cyclooxygenase (COX)-2 was examined using a rat endotoxin shock model and the potency and selectivity of NS-398, a COX-2 selective inhibitor in vitro, for COX-2 activity was examined in vivo. MATERIAL: Male Wistar rats (weighing 140-180 g) were used. METHODS: Lipopolysaccharide (LPS, 1 mg/kg, i.v.) was administered to rats (LPS-treated rats) and expression of COX-1 mRNA and COX-2 mRNA in the aorta and peripheral blood leukocytes was examined by RT-PCR. COX activity was assessed by measuring the plasma 6-keto prostaglandin (PG) F1 alpha, PGE2 and thromboxane (TX)B2 30s after administration of arachidonic acid (AA, 3 mg/kg, i.v.), NS-398 (0.3-100 mg/kg, p.o.) or indomethacin (0.3-3 mg/kg, p.o.) was administered 1 h before the AA injection. RESULTS: COX-2 mRNA was detectable in the aorta and peripheral blood leukocytes at least from 3 to 9 h after the LPS injection but not in non-LPS-treated rats. Plasma 6-keto PGF1 alpha, PGE2 and TXB2 levels after AA injection into LPS-treated rats were significantly enhanced compared to findings in non-LPS-treated rats. NS-398 showed significant inhibition of the increase in PGs in LPS-treated rats, the ED50 values being 0.35 mg/kg for 6-keto PGF1 alpha, 1.5 mg/kg for PGE2 and < 0.3 mg/kg for TXB2. NS-398 even at 100 mg/kg did not significantly suppress the increased PGs levels in non-LPS-treated rats. In contrast, indomethacin significantly inhibited plasma PGs levels after AA injection into LPS-treated rats and non-LPS-treated rats. The ED50 values in LPS-treated rats, determined by 6-keto PGF1 alpha, PGE2 and TXB2 production, were 1.0, 1.3 and 2.3 mg/kg and those in non-LPS-treated rats were 0.42, 0.24 and 0.93 mg/kg, respectively. CONCLUSIONS: In a rat endotoxin shock model, expression of COX-2 plays a role in an increase in COX activity. NS-398 showed preferential inhibitory effects on COX-2 activity in vivo. This approach is useful to directly analyze the inhibitory activity of NSAIDs for COX-1 and COX-2 in vivo.  相似文献   

3.
The effect of captopril, furosemide, indomethacin and intake of sodium on the production of PGI2-like material was studied in the rat aorta. Release of PGI2-like material from these vessels was estimated by its ability to inhibit ADP-induced platelet aggregation. Pretreatment with indomethacin (15 mg/kg/day) reduced the capacity of the aorta to release PGI2-like material. Pretreatment with captopril (10 mg/kg/day) had no effect. Intravenous furosemide (60 microgram/ml plasma volume) increased the capacity of the aorta to inhibit by 28% (p less than 0.25). The inhibitory capacity of aorta removed from rats on a low sodium diet did not differ from those on a high sodium diet. We conclude that the action of furosemide in reducing vascular tone may be related to stimulation of PGI2 synthesis in blood vessels whereas the effect of captopril and sodium in reducing vascular tone may involve a mechanism unrelated to PGI2 synthesis or may involve the synthesis of a prostaglandin other than PGI2.  相似文献   

4.
1. The effects of L-arginine treatment on dexamethasone-induced hypertension were examined in the Sprague-Dawley rat. Seventy rats were randomly divided into the following eight groups: sham, dexamethasone (5 and 10 micrograms/day, L-arginine (100 and 500 mg/kg per day), L-arginine (100 or 500 mg/kg per day) + dexamethasone (10 micrograms/day), L-arginine (520-797 mg/kg per day in food) + dexamethasone (5 micrograms/day). Systolic blood pressure (SBP), bodyweight and plasma nitrate/nitrite concentration were measured. 2. Dexamethasone (5 and 10 micrograms/day) increased SBP in both sham and L-arginine-treated rats. Dexamethasone at 10 micrograms/day decreased bodyweight, but did not alter plasma nitrate/nitrite concentrations. 3. L-Arginine (500 mg/kg per day, i.p.) increased plasma nitrate/nitrite concentrations in 10 micrograms/day dexamethasone-treated rats. L-Arginine did not alter blood pressure in either sham or dexamethasone-treated rats. 4. Dexamethasone-induced hypertension differs from adrenocorticotropic hormone (ACTH)-induced hypertension in the rat in that it is not modified by L-arginine. Thus, ACTH-induced hypertension cannot be explained simply in terms of glucocorticoid activity.  相似文献   

5.
The structural and mechanical properties of small arteries are altered in rat models of hypertension. The precise role of humoral factors in these changes has not been determined. In deoxycorticosterone acetate (DOCA) salt hypertension, endothelin-1 (ET-1) peptide content and gene expression are enhanced in mesenteric resistance arteries. These vessels also present augmented vasoconstrictor responsiveness to vasopressin versus control uninephrectomized rats. To determine whether an interaction exists between vasopressin and ET-1 in the pathogenesis of small-artery structural alterations in DOCA-salt rats, we examined the effect of chronic V1 vasopressin receptor antagonism (OPC-21268, 30 mg/kg BID) on the structure and mechanical properties of mesenteric resistance arteries using a pressure myograph and the effect on preproendothelin-1 (preproET-1) gene expression, determined by Northern blot analysis of preproET-1 mRNA. Tail-cuff systolic pressures were elevated in DOCA-salt (200+/-11 mm Hg) versus uninephrectomized rats (109+/-4 mm Hg) and decreased slightly but significantly by OPC-21268 to 187+/-7 mm Hg (P<0.01). Treatment with DOCA-salt increased vascular media-lumen ratios and media cross-sectional areas and reduced both stress and incremental elastic modulus for a given pressure. However, there was no change in distensibility or incremental elastic modulus versus media stress. OPC-21268 partially attenuated the vascular growth in DOCA-salt rats. PreproET-1 mRNA was increased 2-fold in mesenteric arteries of DOCA-salt rats versus uninephrectomized rats, an effect abrogated by OPC-21268. Thus, DOCA-salt hypertension is associated with altered morphology of the small-arterial wall, without altering stiffness of the arterial wall components. OPC-21268 regressed in part these changes, suggesting the involvement of vasopressin. The concomitant attenuation of enhanced ET-1 expression by OPC-21268 suggests that ET-1 may be involved in mediating in part the vascular effects of vasopressin in DOCA-salt hypertensive rats.  相似文献   

6.
1. Endogenous synthesis of tetrahydrobiopterin (BH4) is an essential requirement for cytokine-stimulated nitric oxide (NO) synthesis in rat mesangial cells. GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, is expressed in renal mesangial cells in response to two principal classes of activating signals. These two groups of activators comprise inflammatory cytokines such as interleukin (IL)-1beta and agents that elevate cellular levels of cyclic AMP. 2. We examined the action of the potent anti-inflammatory drug dexamethasone on GTP cyclohydrolase I induction in response to IL-1beta and a membrane-permeable cyclic AMP analogue, N6, O-2'-dibutyryladenosine 3'-5'-phosphate (Bt2cyclic AMP). 3. Nanomolar concentrations of dexamethasone markedly attenuated IL-1beta-induced GTP cyclohydrolase I mRNA steady state level as well as IL-1beta-induced GTP cyclohydrolase I protein expression and enzyme activity. In contrast, dexamethasone did not inhibit Bt2cyclic AMP-triggered increase in GTP cyclohydrolase I mRNA level and protein expression, and low (1 nM) or high (1 and 10 microM) doses of dexamethasone consistently increased Bt2cyclic AMP-induced GTP cyclohydrolase activity. 4. In summary, these results suggest that glucocorticoids act at several levels, critically dependent on the stimulus used, to control GTP cyclohydrolase I expression.  相似文献   

7.
Previous studies in this laboratory have shown that gamma-ray ionizing radiation in combination with oltipraz, a radioprotective agent, enhances hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression. The present study was designed to investigate the effects of dexamethasone on the radiation-inducible expression of mEH and rGST genes and on the vitamin C and E-induced radioprotective effects in association with the expression of the genes. Treatment of rats with a single dose of dexamethasone (0.01-1 mg/kg, p.o.) caused a dose-dependent decrease in the constitutive mEH gene expression at 24 hr. The radiation-inducible mEH mRNA level (threefold increase after 3 Gy gamma-irradiation) was decreased by 21% and 88% by dexamethasone at the doses of 0.1 and 1 mg/kg, respectively. Although dexamethasone alone caused 2- to 5-fold increases in the hepatic rGSTA2 mRNA level, rats treated with dexamethasone prior to 3 Gy irradiation exhibited 80%-93% suppression in the radiation-inducible increases in the rGSTA2 mRNA level. The inducible rGSTA3 and rGSTA5 mRNA levels were also significantly decreased by dexamethasone, whereas the rGSTM1 mRNA level was reduced to a lesser extent. Vitamin C and/or E, however, failed to enhance the radiation-inducible increases in hepatic mEH and rGST mRNA levels. Whereas rats exposed to 3 Gy irradiation with or without vitamin C treatment (30 or 200 mg/kg/day, p.o., 2 days) exhibited approximately threefold increases in the mEH and rGSTA2/3/5 mRNA levels relative to untreated animals, dexamethasone treatment (1 mg/kg, p.o.) resulted in 64%-96% decreases in the mRNA levels at 24 hr. The inducible rGSTM1/2 mRNA levels in the vitamin C/E-treated rats were approximately 50% suppressed by dexamethasone. Although vitamin C and/or E treatment (200 mg/kg/day, p.o., 2 days) improved the 30-day survival rates of the 8 Gy gamma-irradiated mice from 39% up to 74%, the improved survival rate of gamma-irradiated animals was reduced to 30% by dexamethasone pretreatment (1 mg/kg/day, 2 days). The mean survival time of dexamethasone-treated animals was reduced to approximately 2 days from 14 days in the animals with total body irradiation alone. No significant hematologic changes were observed in mice at 10 days after dexamethasone plus gamma-irradiation, as compared with irradiation alone. These results demonstrate that: dexamethasone substantially suppresses radiation-inducible mEH, rGSTA and rGSTM expression in the liver; vitamins C/E exhibit radioprotective effects without enhancing radiation-inducible mEH and GST gene expression; and inhibition of radiation-inducible mEH and rGST gene expression in the vitamin C- and E-treated animals by dexamethasone was highly correlated with reduction in the survival rate and the mean survival time of gamma-irradiated animals.  相似文献   

8.
OBJECTIVE: To analyze the effect of the long-acting calcium channel blocker lacidipine on cardiovascular remodeling induced by salt loading in a genetic model of hypertension. DESIGN: We examined the influence of threshold doses of lacidipine, with little blood-pressure lowering effect, on cardiac weight and gene expression in stroke-prone spontaneously hypertensive rats (SHRSP). METHODS: SHRSPs (8-week-old) were randomly allocated to four groups: control, salt-loaded SHRSP and salt-loaded SHRSP treated with lacidipine at 0.3 and 1 mg/kg per day. Systolic blood pressure was measured by the tail-cuff method. At the end of 6 weeks of treatment, ventricles were collected and weighed. Ventricular messenger RNA was extracted and subjected to Northern blot analysis. RESULTS: Lacidipine (0.3 mg/kg per day) not only prevented the salt-dependent cardiac hypertrophy and the slight increase in systolic blood pressure induced by salt, but also prevented, largely or completely, salt-dependent increases in ventricular levels of several gene products: skeletal and cardiac alpha-actin, beta-myosin heavy chain (beta-MHC), type I collagen, long-lasting (L)-type calcium channel and preproendothelin-1. At a higher dose of 1 mg/kg per day, lacidipine further decreased systolic blood pressure below the level of control SHRSP, completely prevented salt-dependent overexpression of the beta-MHC gene and markedly attenuated salt-dependent overexpression of the transforming growth factor-beta1 gene. CONCLUSIONS: Lacidipine prevents the cardiac remodeling and enhanced gene expression induced by salt loading in SHRSP at doses that only minimally affect the high systolic blood pressure.  相似文献   

9.
10.
OBJECTIVE: Chronic infusion with angiotensin II increases blood pressure and activates growth mechanisms to produce hypertrophy of the heart and vessels. In order to better understand mechanisms of angiotensin II induced vascular hypertrophy, this study aimed to determine whether heparin, a potent inhibitor of smooth muscle proliferation mechanisms, was able to inhibit vascular hypertrophy. METHODS: Angiotensin II (100, 200 or 300 ng/min/kg s.c.) or a saline vehicle control were infused into rats for 14 days. A separate group of animals were co-infused with heparin (0.3 mg/h/kg i.v.) and angiotensin II (200 ng/min/kg s.c.) to test whether hypertension or hypertrophy were antagonized. Blood pressure was measured by tail cuff method and vessel media cross sectional area was measured by morphometry in aorta and mesenteric arteries. RESULTS: Blood pressure elevation and cardiovascular hypertrophy produced by angiotensin II were strongly dose-dependent. Hypertrophy responses at 14 days of treatment also appeared to be influenced partly by local factors as medial cross sectional area was increased more in mesenteric arteries than in thoracic aorta, and left ventricle weight was least affected. Heparin treatment did not influence the increase of blood pressure in angiotensin II infused animals, but the mesenteric vascular hypertrophy response due to angiotensin II was inhibited by approximately 50%. Inhibition of a modest cardiac hypertrophy and aortic medial hypertrophy did not reach significance. CONCLUSIONS: Angiotensin II infusion produced vascular medial hypertrophy and increased blood pressure, however the inhibitory effect of heparin on hypertrophy in mesenteric arteries was not mediated through angiotensin II induced vasoconstriction or blood pressure elevation. These data suggest that heparin interferes directly with the hypertrophy mechanism in mesenteric arteries, and that heparin-sensitive growth mechanisms are important in mediating angiotensin induced mesenteric vascular hypertrophy.  相似文献   

11.
12.
Monocyte chemoattractant protein-1 (MCP-1), a potent monocyte chemoattractant synthesized by vascular cells and monocytes, has been proposed to be an important mediator of inflammatory responses in the arterial vasculature. It was recently demonstrated that hypertension is associated with an inflammatory response in the arterial wall. To determine the effect of hypertension on arterial MCP-1 expression, we induced hypertension in Sprague-Dawley rats by infusing angiotensin II (0.75 mg x kg[-1] x d[-1] SC) for 7 days. Using Northern blot analysis, we detected a 3.6-fold increase in MCP-1 mRNA in the aortas of hypertensive rats. When we normalized blood pressure in angiotensin II-treated rats through oral administration of the nonspecific vasodilator hydralazine (15 mg x kg[-1] x d[-1]), aortic MCP-1 mRNA expression was significantly reduced. Similar results were obtained with a norepinephrine model of hypertension. Taken together, these data suggest that mechanical factors may be responsible in part for the upregulation of expression. Consistent with this interpretation, we found that cultured rat aortic vascular smooth muscle cells exposed to mechanical strain (20% peak deformation at 1 Hz) exhibited a marked increase in MCP-1 expression, suggesting the hemodynamic strain imparted onto arterial cells in hypertension is an important stimulus underlying this phenomenon. These results provide important insights into the in vivo regulation of MCP-1 and have potential implications for understanding the influence of hypertension on atherosclerosis.  相似文献   

13.
14.
15.
16.
In adrenalectomized rats, acidosis does not increase whole-body leucine oxidation unless a physiologic amount of glucocorticoids (dexamethasone) is also provided; an equivalent dose of dexamethasone without acidosis does not change leucine catabolism. Because the influences of acidification and glucocorticoids on branched-chain amino acid metabolism in specific organs are unknown, the function of branched-chain alpha-ketoacid dehydrogenase (BCKAD), the rate-limiting enzyme in branched-chain amino acid catabolism, in adrenalectomized rat skeletal muscle and liver, the two major tissues that degrade branched-chain amino acid was measured. In muscle of acidotic adrenalectomized rats receiving dexamethasone, basal and total BCKAD activities were increased 2.6- (P < 0.05) and 2.8-fold (P < 0.05), respectively. Neither acidosis nor dexamethasone alone increased these activities. BCKAD E1alpha subunit mRNA in muscle of acidotic rats given dexamethasone was increased 1.89-fold (P < 0.05) in parallel with the change in BCKAD activity; BCKAD E2 subunit mRNA was increased by acidosis, dexamethasone, or a combination of both stimuli. In contrast, basal BCKAD activity in liver of rats with acidosis or dexamethasone was nearly threefold lower (P < 0.05) and changes in enzyme activity reflected reduced subunit mRNA. Thus, there are reciprocal, tissue-specific changes in BCKAD function in response to acidosis.  相似文献   

17.
18.
To determine whether rat osteoblasts synthesize proteins of the annexin family and to evaluate the extent to which glucocorticoids modulate the expression of annexins by these cells, osteoblasts were grown in primary cultures in the absence or presence of dexamethasone, and the expression of annexins was evaluated by immunoblotting using polyclonal antibodies against human annexins. Four different annexins (I, II, V, and VI) were found to be expressed by rat osteoblasts. The expression of annexin I, but not the other annexins studied, was increased in osteoblasts cultured in the presence of dexamethasone (173 +/- 33% increase comparing untreated cells and cells treated for 10 days with 5 x 10(-7) M dexamethasone). Increased expression of annexin I was observed after the third day of exposure to dexamethasone and rose thereafter until day 10; annexin I expression increased with dexamethasone concentrations above 10(-10) M throughout the range of concentrations studied. The increase in annexin I protein was associated with an increase in annexin I mRNA and was completely blocked by the concomitant addition of the glucocorticoid receptor antagonist RU 38486. The increase in annexin I content following dexamethasone treatment was associated with an increase in alkaline phosphatase activity and PTH-induced cAMP stimulation, whereas phospholipase A2 activity in the culture medium was reduced to undetectable levels. The finding that four annexins are expressed in rat osteoblasts in primary culture raises the possibility that these proteins could play an important role in bone formation by virtue of their ability to bind calcium and phospholipids, serve as Ca2+ channels, interact with cytoskeletal elements, and/or regulate phospholipase A2 activity. In addition, the dexamethasone-induced increase in annexin I may represent a mechanism by which glucocorticoids modify osteoblast function.  相似文献   

19.
20.
BACKGROUND: In hypertension with cardiac hypertrophy, the specific contributions to increased production of the cardiac natriuretic peptides (NP) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) by load and the hypertrophic process are not known. In the present work we determine ANF and BNP synthesis and secretion in the aortic-banded rat treated with dosage schedules of the ACE inhibitor ramipril that result in the prevention or regression of both hypertension and hypertrophy (high dosage) or in the prevention or regression of hypertrophy alone with persistent hypertension (low dosage). Myosin heavy chain (MHC) isoform switch was studied as an indicator of ventricular cardiocyte hypertrophy as well as the levels of collagen III mRNA as a measure of changes in extracellular matrix. METHODS AND RESULTS: Ramipril was administered for 6 weeks just after suprarenal aortic banding, or rats were banded for 6 weeks, after which ramipril was administered during the following 6 weeks. Banding caused an increase in blood pressure, left ventricular weight-to-body weight ratio, plasma and ventricular NP, ventricular NP mRNA, collagen III, and beta-MHC mRNA. Ramipril at 1 mg/kg normalized all these parameters while ramipril at 10 micrograms/kg normalized left ventricular weight-to-body weight ratio but not blood pressure. Plasma and ventricular NP content and mRNA levels were partially normalized by ramipril (10 micrograms/kg). Ramipril (10 micrograms/kg) prevented increased collagen III mRNA levels but did not affect beta-MHC mRNA levels. CONCLUSIONS: (1) NP production and secretion in aortic-banded rats are independently related to increased blood pressure and hypertrophy. (2) A load-dependent component is more important than a load-independent component in regulating left ventricular NP production. (3) ANF production is more sensitive than BNP production to the load-independent component. (4) Low-dose ramipril treatment reverses hypertrophy and the increased collagen III expression but does not reverse the increased beta-MHC isoform expression, suggesting that these are independently regulated processes. (5) Aortic banding and ACE inhibition do not affect atrial NP production and content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号