首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
LaFe11.2Co0.7Si1.1Bx合金在室温区的大磁热效应   总被引:2,自引:0,他引:2  
从室温磁制冷目的出发,用工业纯原料制备了具有NaZn13型结构的稀土铁基化合物LaFe11.2Co0.7Si1.1Bx(x=0,0.1,0.2,0.25,0.3,0.4,0.5),并对其磁热效应进行了研究.实验结果表明,LaFe11.2Co0.7Si1.1Bx合金在室温区具有大磁热效应,在x=0.2时,磁熵变|ΔSm|的峰值位于居里温度TC=270K处,1.5T外磁场下达到7.3J/kg·K,直接测量绝热温变ΔTad达到2.7K;B元素作为置换原子和间隙原子进入NaZn13相,显著提高了合金的磁熵变和居里温度.  相似文献   

2.
通过X射线衍射和磁性测量手段研究了由Cr,Mn,Co,Ni原子替代LaFe11.5Si1.5化合物中的Fe原子,对化合物结构、磁性与磁热效应的影响.结果表明:替代后的所有化合物的主相均为NaZn13型立方结构并存在杂相,衍射数据精修图表明杂相分别为1.3%的α-Fe相和2.5%的LaFeSi相.Cr,Mn和Ni的替代Fe使LaFe11.5 Si1.5化合物的居里温度与饱和磁化强度下降,而Co的替代化合物的居里温度与饱和磁化强度且增加.所有的替代均使化合物的热滞下降.对Cr,Mn,Fe,Co,Ni替代Fe的化合物在0~5.0T的磁场下最大磁熵变-△Sm分别为23.8,19.8,26.4,20.0和25.9 J·(kg·K)-1.  相似文献   

3.
《稀土》2015,(1)
NaZn13型晶体结构的La(Fe,Si)13化合物由于具有原料价格低廉、磁热效应巨大、环保等优点而备受关注,已经成为国际上公认的最有潜力的室温磁制冷材料之一。本文系统介绍了La(Fe,Si)13化合物的结构和磁热性能,阐述了吸氢、吸氮,稀土元素、Co、B、C、Ca等替代元素对该系列化合物结构和磁热性能的影响,评述了最新的La(Fe,Si)13化合物的制备和加工工艺,最后展望了La(Fe,Si)13化合物作为磁制冷材料的发展趋势。  相似文献   

4.
分析了LaFe10.85Co0.65Si1.5C0.2在不同温度下,经过不同时间热处理后的相组成、微观组织特点、相变和磁性能。XRD衍射结果表明,经过温度高于1353 K的3天热处理后,LaFe10.85Co0.65Si1.5C0.2样品均得到了具有NaZn13结构的基体相。但是α-Fe的含量随退火温度增加而逐渐增加。样品的居里温度在300 K左右,在2.0 T外加磁场下最大磁熵变-ΔSM达到4.7 J·kg-1·K-1,是一种很好的室温磁致冷材料。  相似文献   

5.
室温磁制冷材料研究现状及发展前景   总被引:1,自引:0,他引:1  
杨斌  杨俊逸  朱根松 《稀土》2004,25(4):57-62
对室温磁制冷材料的研究现状进行了概述,重点介绍了Gd-Si-Ge系合金,Heusler合金Ni-Mn-Ga和NaZn13型化合物LaT13(T=过渡族掺少量其他金属)及MnFePAs系过渡金属基化合物,对室温磁制冷材料的研究现状及材料与磁制冷技术的发展前景进行了分析。  相似文献   

6.
LaFeCoSi基合金中添加少量Cr、Ti元素,使其形成LaFe11.1-xCrxCo0.8Si1.1B0.25、LaFe11.1-xTixCo0.8Si1.1B0.25系列合金,利用磁热效应直接测量仪在1.5T的磁场下进行测量。实验结果表明:添加Cr、Ti元素都对材料的居里温度、磁热效应有影响,可利用这些合金元素在一定程度上调节材料的性能。  相似文献   

7.
热处理工艺对( Mn,Fe)2(P,Si)系列化合物磁性的影响   总被引:1,自引:1,他引:0  
用机械合金化方法成功制备了Mn1.35Fe0.65 P1-x Six(x=0.56和0.57)化合物,分别采用了两种不同的工艺对化合物进行热处理.用X射线衍射仪、振动样品磁强计和绝热温变测量仪分别对样品的结构、等温磁熵变和绝热温变进行了测量.实验结果表明,经过两种不同热处理工艺处理的化合物都形成了Fe2P型六角结构,空间群为P62m,在经过淬火处理的Mn1..Fe0 eP0..Si0.56化合物中存在少量的(Mn,Fe) 5Si3第二相,空间群为P63/mcm.样品的居里温度都在室温附近,在278 ~296 K之间变化,不同热处理工艺对化合物的居里温度具有一定的影响.经过淬火处理的化合物存在较小的热滞和较大的等温磁熵变,两种化合物的热滞都由自然冷却处理时的5K降低到淬火处理时的3K.当Si的含量分别为0.56和0.57时,与经过自然冷却处理的化合物相比,经过淬火处理的化合物的最大磁熵变分别提升了33%和20%.在经过淬火处理的Mn1.35Fe0.65P0.44Si0.56化合物磁熵变最大,磁熵变的最大值为4.3J·kg-1·K-1.经过自然冷却处理的Mn1.35 Fe0.65P0.44 Si0.56化合物的最大绝热温变为1.2K.低成本的原料、较小的热滞、理想的制冷温区和较大的磁热效应使得Mn1.35 Fe0.65P1-xSix这一系列化合物在室温磁致冷方面有应用前景.  相似文献   

8.
作为一种固态制冷技术,室温磁制冷技术具有环境友好、能效高、运行可靠等优点,被公认有望替代传统的气体压缩制冷。磁制冷技术利用磁工质的磁热效应和主动式磁蓄冷技术实现制冷,主要集中于具有大磁热效应的磁工质的研发、永磁系统的设计以及换热系统的优化。二十世纪末至今,中国、美国、丹麦、德国、意大利、法国、斯洛文尼亚等国家先后开展了磁制冷方面的相关研究。本研究主要综述了现已在磁制冷机中取得应用的室温磁工质和室温磁制冷机所能达到的性能指标。已取得应用的室温磁工质可分为一级相变材料和二级相变材料,一级相变材料主要指La(Fe, Si)13基化合物,二级相变材料主要是金属Gd及其合金,为室温磁制冷机中普遍采用的磁工质。根据运行方式的不同,室温磁制冷机可分为往复式磁制冷机和旋转式磁制冷机。从运行频率、磁工质、温跨、制冷能力等方面,本研究对比了不同典型的室温磁制冷机的性能。  相似文献   

9.
通过电弧炉熔炼法制备了LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2,0.3)系列合金,XRD分析表明少量P元素替代,LaFe11.4Si1.6-x P x(x=0.05,0.1,0.2和0.3)合金仍然保持NaZn13型结构,但晶格常数减小。在居里温度T c附近磁化曲线表明,该系列合金经历由磁场引起巡游电子由顺磁态到铁磁态变磁转变的一级相变。随着P含量的增加,LaFe11.4Si1.6-x P x(x=0.05,0.1和0.2)的居里温度T c减小,等温磁熵变也减小。在外加磁场变化为0~1.5 T时,等温磁熵变最大值分别为19.3 J/(kg·K),15.3 J/(kg·K)和10.3 J/(kg·K)。  相似文献   

10.
徐超  李国栋  王利刚 《稀有金属》2005,29(6):927-930
通过X射线衍射和磁性测量等手段对金属间化合物La0.8Ce0.2(Fe1-xCox)10.5Si2.5(x=0,0.02,0.04,0.06)系的结构、磁性以及磁熵变进行了研究.实验发现,La0.8Ce0.2(Fe1-xCox)10.5Si2.5系的晶体结构均保持立方NaZn13型结构.随着Co含量x的不断增大,晶格常数将单调减小,居里温度TC呈单调增加.当x=0.02时,该化合物在居里温度TC~239K具有较高的磁熵变︱ΔSM︱,在1 T的磁场下(ΔSM)max为2.87 J·kg-1·K-1.当x=0.04和0.06时,居里温度在室温附近,磁熵变有了一定程度的降低,但仍有可观的磁熵变.最后,对该系列合金作为近室温磁制冷工质的可能性作了适当地探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号