首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The effect of carbon dioxide blanketing (CDB) and vacuum frying (VF) on the frying performance of regular canola oil was evaluated. For 7 h daily and for 7 days French fries were fried in regular canola oil at 185 ± 5 °C without and with CDB and in a vacuum fryer. The extent of changes in the oil was assessed by analysis of total polar compounds (TPC), anisidine value (AV), color component formation and changes in composition of fatty acids and tocopherols. Frying under CDB reduced the amount of TPC by 54%, while 76% reduction was observed during VF compared to standard frying conditions (SFC). Similarly, lower oxidative degradation was observed when measured by AV. At the end of the frying period, the reduction in unsaturated fatty acid content was 3.8, 1.9 and 12.7% when frying under CDB, vacuum and SFC, respectively. The rate of tocopherol degradation was three and twelve times slower in VF when compared to CDB and SFC, respectively.  相似文献   

2.
The objective of this study was to compare two oils with different polyunsaturated/saturated (P/S) fatty acid ratios, refined olive oil (P/S 0.75) and palm olein (P/S 0.25), in frying French fries. The chemical qualities of the oil residues extracted from the French fries were assayed for five consecutive batches fried at 1-h intervals. The levels of total polar compounds, free fatty acids, p-anisidine value and phytosterol oxidation products (POPs) were elevated in French fries fried in both oils. The level of total polar compounds increased from 4.6 in fresh refined olive oil to 7.3% in final batches of French fries. The corresponding figures for palm olein were 9.8–13.8%. The level of free fatty acid in fresh refined olive oil increased from 0.06 to 0.11% in final products. These figures for palm olein were 0.04–0.13%. The p-anisidine value increased from 3.7 to 32.8 and 2.5 to 53.4 in fresh oils and in final batches of French fries in refined olive oil and palm olein, respectively. The total amount of POPs in fresh refined olive oil increased from 5.1 to 9.6 μg/g oil in final products. These figures were 1.9 to 5.3 μg/g oil for palm olein.  相似文献   

3.
Accumulation of 5-Hydroxymethylfurfural in Oil During Frying of Model Dough   总被引:1,自引:0,他引:1  
5-Hydroxymethylfurfural (HMF), a thermal process contaminant, forms in food during frying as a result of the Maillard reaction and caramelization. Owing to its chemical properties, HMF formed in foods during frying partially transfers into frying oil. This study aimed to investigate the accumulation of HMF in oil during repetitive frying operations. A model dough composed of 25 % of glucose was fried at 160, 170, 180 °C for 50 frying cycles. Apart from total polar compounds (TPC), accumulation of HMF was determined in oils during repetitive frying operations. Increasing frying temperature also increased the amount of HMF formed in dough, and those transferred to oil. Prolonging frying cycles to 150, increasing amount of dough being fried to 100 g and frying time to 10 min caused the TPC content to reach 25 % at the 130th frying cycle at 180 °C. Under the same frying conditions, the concentration of HMF showed a rapid increase at the first 10th frying cycle. Its increase was at a slower rate until the 50th frying cycle reaching a plateau level exceeding 5.0 mg/L. The results revealed that HMF transferred and accumulated in the frying oil during repetitive frying. The HMF concentration exceeding 5.0 mg/L in oil may be considered as an indicator for heavily used frying oil. Correlation between TPC and HMF contents of frying oil showed no linear correlation.  相似文献   

4.
In this study, the effect of sesame oil (SEO) and rice bran oil (RBO) on the rancidity of canola oil (CAO) during the process of frying potato pieces at 180 °C was investigated. The SEO and RBO were added to the CAO at levels of 3 and 6%. Frying stability of the oil samples during the frying process was measured on the basis of total polar compounds (TPC) content, conjugated diene value (CDV), acid value (AV), and carbonyl value (CV). In general, frying stability of the CAO significantly (P < 0.05) improved in the presence of the SEO and RBO. The positive effect of the SEO on the stability of the CAO was more than that of the RBO. Increasing the amounts of SEO and RBO from 3 to 6% led to decreases in the TPC and AV, and increases in the CDV and CV of the CAO during the frying process. The best frying performance for the CAO was obtained by use of 3% of both SEO and RBO together (CAO/SEO/RBO, 94:3:3 w/w/w).  相似文献   

5.
The effect of repeated deep frying of potatoes versus repeated heating/quenching on the chemical profile of palm oil was investigated. The novelty of the work is that the frying and heating/quenching experiments were conducted under similar time-temperature profiles. The effects of the frying load (potato-to-oil ratio: 1/7 and 1/35 kgpotatoes/loil) and of the time-temperature profile were examined. Whole palm oil and its polar fraction were analyzed using high pressure size exclusion chromatography. Both repeated frying and repeated heating/quenching generated polar and polymerization products in palm oil. Interestingly, no hydrolysis or other decomposition products were generated under any of the examined conditions. The presence of potatoes during frying in palm oil increased the concentration of polymerization products and polar compounds compared to oils without potatoes significantly. The effects of frying load on oil quality depended on frying time. No significant effect of frying load was observed up to frying times of 13 h (or 10 frying batches). However, frying oil quality was affected by frying load once frying times exceeded 24 h (or 20 batches).  相似文献   

6.
Measures of free fatty acids (FFA), total polar materials (TPM), and conjugated dienoic acids (CDA), typical indices of oil degradation, were analyzed in daily oil aliquots taken from soybean oils with different linolenic acid concentrations used to fry French fries. The oils also were scanned with a reflectance near-infrared spectrometer using a wavelength range of 350–2,500 nm. By using partial least squares and one-out cross validation, calibrations were developed to quantitatively determine FFA, TPM, and CDA by near-infrared spectroscopy (NIRS). The coefficients of determination (R 2) when compared to the standard methods were 0.973 for FFA, 0.984 for TPM, and 0.902 for CDA. NIRS was an accurate and fast method to determine FFA, TPM, and CDA in oxidized oils. The ability to obtain different parameters simultaneously makes NIRS a potentially valuable tool for food quality assurance.  相似文献   

7.
Canolol‐enriched extracts obtained from the extraction of fluidized bed treated canola meal with supercritical carbon dioxide were added to high‐oleic canola oil in different concentrations (200, 500 and 750 mg/kg). After 30 h of deep‐fat frying, oils fortified with canolol‐enriched extracts showed a two to three times better frying performance in comparison to the commonly used antioxidants (TBHQ, 200 mg/kg; rosemary extract, 40 and 200 mg/kg) and a control without antioxidants with regards to the formation of di‐ and polymer triacylglycerols, total polar compounds, secondary degradation products (anisidine value) and the iodine value. The canolol‐enriched extracts were also able to slow down the degradation of α‐ and γ‐tocopherol during frying resulting in significant amounts of tocopherols after 30 h of frying in comparison to the other oils. The influence of the canolol‐enriched extracts indicated strongly concentration‐dependent performance. With increasing concentration of the extract, the thermal stability of the fortified oil was improved. The only disadvantage of the addition of the extracts was an increase in the initial acid value, but within the frying time, only oil fortified with 750 mg canolol‐enriched extract/kg reached the limit given in different countries.  相似文献   

8.
Changes in the composition of soybean oil during deep‐fat frying with wheat dough (WD) and chicken breast meat (CBM) were comparatively investigated using gas chromatography–mass spectrometry and Fourier transform infrared spectroscopy (FTIR). The amounts of saturated fatty acids (FAs) and short‐chain FAs were increased. The amount of unsaturated FAs was decreased as the processing time increased. An increase in the amount of tetradecanoic acid and 9‐cis‐hexadecanoic acid was observed during the CBM frying only. The FTIR spectrum of frying oil was analyzed by extracting the entire information as the area ratios based on vibration absorptions of the specific functional groups. Changes in content of functional groups, namely cis C=C, trans C=C, C=O, C–O, O–H, and C–H, were studied by the FTIR‐based method. Based on the changes in the content of FAs and functional groups, soybean oil fried with CBM degraded more quickly than that fried with WD. Moreover, good linear correlations between the change in contents of functional groups and the mass percentages of FAs were also observed. The FTIR‐based method could be used in real time to monitor the quality of frying oil during the deep‐fat frying.  相似文献   

9.
Frying oils are prone to quality deterioration; because of the high surface area, lipid molecules can interact with air, moisture, and oxidative reagents that promote various reactions. However, the search for effective ingredients for stabilizing frying oil has been slow, given the complexity of the frying processes and lack of effective tools to accurately predict the performance of emerging ingredients. On the other hand, demand for label‐friendly food ingredients has increased. This study aimed to develop a rapid method mimicking real frying conditions to allow the screening of a large number of treatments with improved throughput, while evaluating their effectiveness in stabilizing frying oils. The design utilizes multi‐well heating blocks of conventional OSI. Repeated frying was conducted using miniature baskets, and validations were conducted to examine the accuracy of the relative efficacy of individual treatments. Utilizing this method as a tool, natural plant extracts, standard antioxidants, and their combinations were evaluated and compared in frying palm oil, which demonstrated that the combination of tocopherols, rosemary extract, and oil‐soluble green tea extract was effective for the stabilization of frying oil.  相似文献   

10.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

11.
The fatty acid composition, peroxide value (PV), acid value (AV), iodine value (IV), total tocopherols (TT) content, and total phenolics (TP) content of canola oil (CAO), palm olein oil (POO), olive oil (OLO), corn oil (COO), and the binary and ternary blends of the CAO with the POO, OLO, and COO were determined. The blends were prepared in the volume ratios of 75:25 (CAO/POO, CAO/OLO, CAO/COO) and 75:15:10 (CAO/POO/OLO, CAO/POO/COO). The CAO and its blends were used to fry potato pieces (7.0 × 0.5 × 0.3 cm) at 180 °C. During the frying process, the total polar compounds (TPC) content, AV, oil/oxidative stability index (OSI), and color index (CI) of the CAO/blends were measured. In general, frying stability of the CAO was significantly (P < 0.05) improved by the blending, and the frying performance of the ternary blends was found to be better than that of the binary blends.  相似文献   

12.
Among oil compounds, fatty acids, tocopherols and xanthophylls (lutein and zeaxanthin) are of special interest due to their nutritional properties. The identification and quantification of these compounds in pecan nuts (Carya illinoinensis) could therefore be very useful to produce functional foods rich in compounds of this type. This paper reports studies on their accumulation and the effect of ripening on the content of these high value-added compounds. The total lipid content increased during the ripening. Saturated and polyunsaturated fatty acids decreased significantly, whereas, monounsaturated fatty acids increased during the ripening of pecan nut fruit. Maximum levels of total tocopherol (279.53 mg/kg oil) and xanthophyll (6.18 mg/kg oil) were detected at 20th weeks after the flowering date. These amounts decreased gradually as ripening advances. The early stages of pecan ripening seem to have nutritional and pharmaceutical interests. These results may be useful for evaluating the pecan nut quality and determining the optimal period when the pecans accumulated the maximum of these nutritional and healthy compounds.  相似文献   

13.
Conditioning rapeseed can significantly increase the amount of bioactive compounds in the crude oil, but if the conditioning temperatures are too high, they can cause unwanted side effects such as darker color and sensory defects. Modest conditioning temperatures may be more suitable, but little is known about the effects on the quality and bioactive composition of the resulting oil. Oil was recovered from five rapeseed cultivars by cold pressing (CP) or by pressing seeds conditioned at 80 °C for 30 min (HP). Conditioning rapeseed increased oil yield without changing fatty acid composition and increased the amount of total sterols by 16 %, total tocopherols by 20 %, and the levels of polyphenols. Levels of the polyphenol canolol were up to 55-fold higher in HP oil than in CP oil. These higher levels of bioactive compounds gave HP oil higher radical scavenging activity. Although HP oil also had higher free fatty acid contents, peroxide levels, and specific UV extinctions (K values). The quality parameters of HP and CP oils were within codex limits indicating high quality. Modest conditioning temperatures can be used to produce rapeseed oil with high quality and radical scavenging activity.  相似文献   

14.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

15.
Increasing consumer awareness for all natural products has quickly led to growing research on new resources of potent and profitable natural antioxidants. In this context, for the first time, the Kolkhoung hull oil (KHO) (Pistacia khinjuk)‐unsaponifiable matters (USM) (UHO) (100, 200, and 400 mg kg?1) were incorporated into refined soybean oil (RSO) and the oxidative stability of prepared oils was measured during 32 hours of frying. Then, the obtained results (oxidative stability) were compared to the samples containing tert‐butyl hydroquinone (TBHQ) (100 mg kg?1) as a common synthetic antioxidant. According to the results of oxidative stability assays of acid values, conjugated diene values and carbonyl values, and total polar compounds, the incorporation of UHO, particularly at a concentration of 200 mg kg?1, was more efficient in improving the oxidative stability compared to TBHQ. The tocol content of KHO (2043.4 mg kg?1) was higher than the reported amounts of other conventional edible oils. Furthermore, by incorporation of UHO into RSO, as compared with TBHQ, a better protection of naturally occurring antioxidants (tocopherols and sterols) was found after adding UHO to RSO. This fact was mainly attributed to the UHO's tocotrienol fraction. Hence, the USM of KHO can be used as a potent antioxidant to improve the oxidative stability of frying oils.  相似文献   

16.
This study is the first report on the quality indices of Chinese wood‐pressed rapeseed oil. Nineteen representative wood‐pressed rapeseed oil samples (representing 80% of the factories that produce this oil in China) were collected and investigated for their physicochemical properties (acid value, peroxide value, color value, and oxidative stability index), fatty acid composition, as well as contents of tocopherols, phytosterols, polycyclic aromatic hydrocarbons (PAH), aflatoxin B1, arsenic, and lead. Significant differences were observed in the quality results of 19 wood‐pressed rapeseed oil samples. The acid value, peroxide value, and color values, as well as the oxidative stability index were found in the ranges of 1.10–3.04 mg KOH/g, 0.84–9.34 mequiv O2/kg, 3.50–5.30 (Y = 35, R), and 4.43–10.34 h (120 °C), respectively. Sixteen of the analyzed oil samples had greater than 2% erucic acid. Tocopherols content ranged from 50.93 to 97.54 mg/100 g and phytosterols content ranged from 453.86 to 735.65 mg/100 g. Meanwhile, benzo[a]pyrene and PAH4 were 1.00–13.57 and 7.47–33.55 μg/kg, respectively. Fourteen samples exceeded the maximum allowable limit of benzo[a]pyrene and PAH4 (chrysene, benz[a]anthracene, benzo[b]fluroranthene, and benzo[a]pyrene) according to the European Union (EU) standards. However, the contents of aflatoxin B1, arsenic, and lead of the tested oil samples were all in conformance with the EU, Codex Alimentarius, and China national standards. Results showed that more attention should be paid to the problem of high PAH4 contents in wood‐pressed rapeseed oil. The inspection and monitoring of raw materials and processing equipment, as well as the establishment of quality standards for the production of high‐quality wood‐pressed rapeseed oil are necessary.  相似文献   

17.
The effects of different frying methods; frying under atmospheric condition and frying in the presence of different ratios of nitrogen and carbon dioxide gases; were investigated on chemical changes of canola oil. The tests were conducted four times per day during four consecutive days. The chemical changes of oil samples were determined by analyzing peroxide value (PV), p-anisidine value (p-AV), totox value (TV) and acid value (AV). Irrespective of the test methods, PV increase was observed on the first day followed by significant (p < 0.05) reduction in the subsequent days. On the first day, the highest p-AV and TV was observed in oil fried under atmospheric condition and the lowest p-AV and TV for those fried under gases. However, from the second day, the p-AV and TV in frying under different ratios of nitrogen and carbon dioxide gases were significantly (p < 0.05) higher than the frying under atmospheric condition. Additionally, hydrolysis and oxidation of oil during frying resulted in continuous AV increase that among them atmospheric frying had the highest AV. In conclusion, atmospheric frying accelerates the rate of oil deterioration and application of nitrogen and carbon dioxide gases in the fryer could reduce the rate of oil disintegration.  相似文献   

18.
The main goal of the present study was (i) to determine the formation of degradation products in cottonseed oil (CSO) blends during deep frying process by adsorption and high performance size exclusion chromatography techniques and (ii) to evaluate the impacts of food additives on total polar (TPC) and polymeric compound (PTAG) formation using a chemometric approach. In order to prepare the frying CSO blends; ascorbic palmitate, mixed tocopherols, dimethylpolysiloxane, lecithin and sesame oils were used as additives. To determine the real impacts of additives, a quarter-fraction factorial experimental design with two levels and five factors was used. The changes in TPC and PTAG data were carefully evaluated during 10 h of frying at 170 ± 5 °C with normal distribution (ND) graphs and analyzed using a one-way analysis of variance (ANOVA), followed by Tukey’s Post-hoc test (α = 0.05). The results indicated that the increasing values for TPC and PTAG during the frying processes for all blends, TPC and PTAG contents reached maximum levels of 16.37 and 6.01 % respectively, which are below the limit values stated by official authorities for the quality assessment of frying oils. The ANOVA test results were in good agreement with ND graphs and data indicated that the impact of mixed tocopherols was significant for TPC formation, meanwhile the impact of lecithin and ascorbic palmitate × dimethylpolysiloxane were significant for PTAG formation. Thus, the present study should be considered to be a very useful guide for developing new frying oil formulations based on CSO by using food additives.  相似文献   

19.
The changes in the content and composition of total fatty acids, phospholipids and sterol esters, and their fatty acids, and of free sterols and tocopherols in developing seeds of a selection of high oleic acid sunflower varieties grown in Bulgaria were examined over a period of 15th to 90th day after flowering by means of various chromatographic methods. Under the climatic and geographical conditions typical for the South-East Balkans phospholipid, sterol-, sterol ester- and tocopherol- species are formed practically completely in the first 15 days after flowering. Until the 90th day, only quantitative changes were detected to give a product with 65% oil content, 1% phospholipids, 0.3% total sterols and 0.09% tocopherols. Oleic acid is the main component in all acyl derivatives, reaching 85% of the total fatty acids while palmitic and stearic acid content is about 4% each. The product is a good quality HOSO with beneficial content of FA and good prospects as a salad and cooking oil.  相似文献   

20.
Two extruded-expelled physically refined soybean oils with reduced contents of linolenic acid, ultra-low- linolenic acid (ULL, 1.5%) and low-linolenic acid (LL, 2.6%), and a extruded-expelled physically refined control oil (control, 5.3% linolenic acid) were evaluated by frying French fries in a commercial-like setting for 6 h day−1 during 23 days. The oils became darker, increased in yellow color at the beginning, and became redder and less green throughout the process. Free fatty acids levels were not different among the oils until day 14, after which, ULL was different from the control for the remainder of frying. The conjugated dienoic acid values were greatest in the control. Generally, ULL and LL oils had lower percentages of polar compounds than did the control, providing a frying life 2 days longer than the control and ~30% increase in frying time. A trained sensory panel evaluated the French fries on days 2, 5, and 6. Buttery and potato flavors decreased, and rancid and painty flavors increased over frying time for all products. Rancid flavor was highest in the fries from the control oil. Overall, the ULL and LL oils performed better than did the control oil and ULL tended to perform better than the LL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号