共查询到18条相似文献,搜索用时 78 毫秒
1.
针对粒子群(PSO)算法的局限性,提出了全局粒子群(GPSO)算法,并将其应用于电力系统无功优化.建立基于全局粒子群算法的无功优化数学模型,给出全局粒子群算法的具体步骤.通过对IEEE30节点算例的测试,得到全局粒子群算法在无功优化问题上的收敛速度和优化效果. 相似文献
2.
3.
基于改进粒子群算法的电力系统无功优化 总被引:8,自引:0,他引:8
电力系统无功优化问题是一个多变量、多约束的混合非线性规划问题。提出了一种改进粒子群算法用以解决这一复杂优化问题。在改进的算法中,首先结合混沌优化思想对粒子群进行初始化,减轻了粒子初始位置的选择对算法优化性能的影响;在进化过程中引入了自探索行为,使得粒子的搜索过程更加符合实际;引入了变异机制及3种判断陷入局部最优的标准,当发现粒子群陷入局部最优时,通过变异,帮助粒子跳出局部陷阱,增加发现最优解的机会。给出了问题的求解方法,并对IEEE 6、14节点系统进行了仿真计算,实验数值对比表明了算法的可行性和有效性。 相似文献
4.
5.
6.
7.
8.
针对离散粒子群算法直接应用于无功优化后存在优化迭代过程易陷入局部最优解且后期收敛速度慢等问题,结合混沌算法,提出更加有效的改进离散粒子群算法求解多目标无功优化问题。同时,对每次迭代后产生的控制变量进行混沌优化,从而避免无功优化控制变量陷入局部极值区域。通过算例分析表明,采用改进离散粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 相似文献
9.
10.
无功优化是保证系统可靠运行的重要措施,针对配电网无功优化的特点,提出一种基于局部电压稳定指标分区与改进粒子群算法相结合的配电网无功优化方法。首先计算系统负荷节点的局部电压稳定指标,根据电压稳定指标大小将负荷节点进行排序,选取排序在后的一部分负荷节点作为候选补偿点集合,结合电气距离将其分区;然后借助改进粒子群算法获得系统最佳补偿点位置与无功补偿量;最后在MATLAB中用IEEE33节点系统进行仿真验证,仿真结果表明,由局部电压稳定指标与电气距离相结合的方法可以缩小寻优范围,得到的候选补偿区合理有效,改进粒子群算法初始化粒子多样性更好,具有更快的收敛速度。 相似文献
11.
基于粒子群-差异进化混合算法的电力系统无功优化 总被引:1,自引:0,他引:1
针对传统粒子群算法中收敛速度快但易于陷入局部最优等特点,将差异进化算法与粒子群算法相结合,提出了一种粒子群-差异进化混合算法。该算法在粒子寻优过程中除跟踪个体极值和全局极值外,还跟踪粒子差异进化产生的第三个值;同时,当粒子在某一维上的速度小于给定值时,将重新初始化该维度粒子速度。建立了无功优化数学模型,并将合算法应用到无功优化中。通过MATLAB编程对IEEE-30节点系统进行优化计算,并与遗传算法和粒子群算法比较,结果表明本文提出的算法应用于无功优化拥有较快的收敛速度和全局寻优能力,具有广阔的发展前景。 相似文献
12.
自适应聚焦粒子群算法(AFPSO)是根据PSO算法的全局搜索与局部搜索平衡特性,改进得到的一种具有较好全局搜索能力和寻优速度的自适应群体智能优化算法.通过采用AFPSO算法,对电力系统进行无功优化.该方法是以最优控制原理为基础,以网损最小为目标函数,在IEEE 30节点系统上进行测试,通过仿真测试以及不同算法优化结果的对比,表明基于AFPSO算法在算法计算精度、收敛稳定性、寻优时间等方面都具有普遍优势,能有效地应用于电力系统无功优化中,证明了AFPSO算法的有效性和优越性. 相似文献
13.
14.
为了更好地实现无功功率最优控制和提高电压质量,在现有基础上,提出了引用多智能体粒子群优化算法(MAPSO).该算法结合了JADE系统和粒子群优化技术,粒子间构建了三维球形环境.PSO种群中,每一个Agent相当于算法中的一个粒子,他们通过Agent间进行竞争与合作操作和自学习操作,吸收了PSO算法的进化机理,能够更快地,更精确地收敛到全局最优解.经IEEE 14节点系统校验,并且与基于Matlab的PSO算法进行比较,结果表明,该算法具有收敛速度快,计算精度高的优点。 相似文献
15.
为了解决粒子算法应用在电力系统无功优化中存在的问题,提出了一种改进的协同粒子优化算法.笔者根据电力系统无功优化问题非线性、不连续、大范围以及电压等级增多、无功优化控制变量较多的特点,建立了改进的协同粒子优化算法无功优化的数学模型,并将协同粒子群算法在无功优化中进行了应用.算例结果表明,该算法有效地改善了粒子群算法的局部收敛问题,缩短了搜索时间,提高了准确性. 相似文献
16.
17.
随着非线性负载的广泛应用,传统负荷端分散的谐波治理方式弊端渐显。以中小型电网中有源电力滤波器的集中补偿配置为目标,设计一种基于隔离小生境粒子群算法的APF优化配置方法。建立了有源电力滤波器的优化配置数学模型,以节点电压畸变率均方根为目标函数,并使用罚函数处理约束条件。改进后的粒子群算法兼顾全局与局部寻优能力,避免陷入局部最优点。在阐述所提优化配置方法流程的基础上,IEEE算例分析表明该配置方法可以同时进行APF位置和容量的寻优,治理后系统各节点总谐波电压畸变率小于4%,谐波附加损耗降低90%以上,实现对单、多谐波源系统电能质量的有效治理。 相似文献