首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以锆英石、氧化硼、活性炭为原料,采用碳热还原合成工艺制备了ZrB2—SiC复合粉体,并对合成过程进行了热力学分析。考察了反应温度及原料配比对碳热还原合成ZrB2—SiC复合粉体的物相的组成、含量和显微结构的影响。结果表明:提高反应温度有利于ZrB2—SiC复合粉体的合成,适当过量氧化硼及活性炭有利于ZrB2—SiC复合粉体的合成。合成ZrB2—SiC复合粉体的最优参数为:当ZrSiO4、B2O3和C的摩尔比为1∶2∶12,在1 773K保温3h,可得到几乎纯相的ZrB2—SiC复合粉体。  相似文献   

2.
马北越  于景坤  谭诚 《耐火材料》2007,41(4):252-254
以锆英石(粒度≤44μm)和炭黑(粒度≤30μm)为原料,按m(锆英石)∶m(炭黑)=100∶20的比例配料,于球磨罐中混匀后,以100MPa的压力压制成20mm×5mm的试样,在120℃下干燥12h后置于Ar气流量为1.5L·min-1的气氛炉内,分别在1450℃、1500℃、1550℃、1600℃和1650℃煅烧4h,自然冷却至室温后,通过化学分析测定SiC含量并计算SiO2的转化率,采用XRD分析试样的相组成,采用SEM观察试样的显微结构,并对碳热还原反应过程进行热力学分析。研究结果表明:1)以锆英石和炭黑为原料,利用碳热还原反应在Ar气氛下可以合成出ZrO2-SiC复合材料;2)通过控制煅烧温度或炉内CO气体分压,可以获得不同组成的复合材料;3)在本试验条件下,合成ZrO2-SiC复合材料的适宜温度为1600℃。  相似文献   

3.
以锆英石(粒度≤44μm)和炭黑(粒度≤30μm)为原料,按m(锆英石):m(炭黑)=100:40的比例配料,于球磨罐中以无水乙醇为介质湿混24 h,然后将料浆放入干燥箱中于60℃下充分干燥,再将干燥后的粉料置于球磨罐中干混10 h。最后,将混匀的物料以60 MPa的压力压制成尺寸为20 mm×5 mm的柱状试样,在120℃下充分干燥后置于N2流量为1.0 L.m in-1的气氛炉内,分别在1 400、1 450、1 480和1 500℃的温度下煅烧,保温时间分别为6、9和12 h。自然冷却至室温后,采用XRD分析试样的相组成,采用SEM观察试样的显微结构,并对碳热还原氮化反应过程进行热力学分析。结果表明:以锆英石和炭黑为原料,利用碳热还原氮化反应,在N2气氛下可以合成出ZrN-Si3N4复合材料;通过控制煅烧温度或炉内CO气体分压,可以获得不同组成的复合材料。在本试验条件下,合成ZrN-Si3N4复合材料的适宜工艺参数为1 500℃保温12 h。  相似文献   

4.
为了降低合成成本,以低能耗、低成本的天然锆英石、工业氧化铝和焦炭为原料,采用碳热还原氮化法合成了ZrN-SiAlON复相材料。根据反应方程式3Al2O3+6ZrSiO4+27C+8N 26ZrN+2Si3Al3O3N5+27CO设计锆英石和工业氧化铝的原料配比,改变还原剂焦炭的配入质量分数(分别为理论用量、过量5%、过量10%、过量20%),经球磨混合、成型、干燥后,在流动氮气中分别于1 500、1 550、1 600℃保温4 h合成,自然冷却后分析合成产物的相组成和显微结构。结果表明:1)在合成温度为1 500℃时,配碳量的增加有助于ZrN的生成;2)在合成温度为1 550℃时,配炭量过量20%的试样中有15R型的多型体SiAlON(即SiAl4O2N4)生成;3)在合成温度为1 600℃时,配碳量为理论量和过量5%的试样中的多型体SiAlON为15R型,而配碳过量10%和20%的试样中的多型体SiAlON则主要为12H型(即SiAl5O2N5)。  相似文献   

5.
以ZrB2和SiC粉为原料,采用Si3N4球为球磨介质,通过等静压成型及无压烧结制备了ZrB2-SiC复相陶瓷。实验确定了ZrB2-SiC复相陶瓷的烧结制度,并研究了SiC含量与球磨时间对ZrB2-SiC复相陶瓷体积密度的影响。结果表明:随着ZrB2球磨时间的增加,ZrB2颗粒粒径逐渐减小,复相陶瓷的体积密度逐渐增加;随着SiC含量的增加,复相陶瓷体积密度降低。ZrB2最佳球磨时间为6h,SiC最佳含量为20%,ZrB2-SiC20%(体积分数)复相陶瓷体积密度达到4.98g/cm3。  相似文献   

6.
以锆英石细粉(≤0.045 mm)和活性炭为起始物料,N2为氮源,研究了配碳量(质量分数为10%、20%、22%和30%)、反应温度(1 3501、400、1 450和1 500℃)以及成型压力(25、501、00和150 MPa)等工艺参数对锆英石碳热还原氮化反应速率及产物相组成的影响。研究结果表明:1)配碳量不同,锆英石碳热还原氮化反应产物的相组成不同;此外,配碳量的增加还会降低锆英石碳热还原氮化反应的开始温度。2)反应温度对反应速率和产物相成分的影响显著;配碳量(w)为22%时,随着反应温度的升高,产物相中锆英石相和m-ZrO2含量减少,ZrN含量不断增加,而Zr7N8O4先增加后减少。3)成型压力对产物相组成的影响不大,但成型压力的增加会降低反应的速率。  相似文献   

7.
本文对碳热还原镁橄榄石合成MgO-SiC复合粉体进行了热力学研究,结合实验,分析了反应的中间过程,对合成粉体具有重要的指导意义.热力学分析表明:当T=1923 K时,所形成的产物,从容易到困难排序依次为:MgO+SiC,MgO+Si,MgO+SiO,Mg+SiC,Mg+Si,Mg+SiO,Mg+SiO2;增大惰性气体流速,降低CO的分压,可以降低镁橄榄石解构温度.在不同氩气流量下的实验证明,增大氩气流量,促进了镁橄榄石的碳热还原反应,有益于MgO-SiC复合粉体的合成.以镁橄榄石与炭黑物质的量比为1∶5配料,混合均匀后,在氩气保护下,在气体流量分别为100 mL/min,300 mL/min,500 mL/min时,1650℃保温3h合成粉体.用X射线衍射仪(XRD)测试合成的物相,用扫描电子显微镜(SEM)观察各物相形貌.实验结果表明,合成的产物MgO为八面体,SiC为条形.过程分析表明,碳还原镁橄榄石生成MgO和SiO,是合成复合粉体的重要中间过程.  相似文献   

8.
吴瑞姣 《山东化工》2022,(21):28-31
以UiO-66为锆源并利用其孔道吸附正硅酸乙酯,以炭黑为碳源,采用程序升温碳热还原法合成ZrO2-SiC复合材料。以X射线衍射为主要手段对ZrO2-SiC复合材料以及合成过程中的关键中间产物进行表征,并分析合成路线中的关键参数对ZrO2-SiC复合材料的影响。结果表明:在本制备方法中,最温和的碳热还原反应温度为1 450℃;ZrO2-SiC复合材料的晶粒尺寸随UiO-66前驱体的孔体积的增加呈现减小的趋势;ZrO2-SiC复合材料中SiC的质量分数随正硅酸乙酯/无水乙醇浸渍溶液中正硅酸乙酯体积分数的增大而上升,但当浸渍液为纯正硅酸乙酯时,SiC的质量分数因浸渍液的低流动性而下降。  相似文献   

9.
用煤矸石制备Al2O3-SiC复相粉体的研究   总被引:1,自引:0,他引:1  
以煤矸石和碳质材料(工业炭黑、活性炭、无烟煤)为主要原料,在流动氩气中碳热还原制备了A l2O3-SiC复相粉体,研究了碳过量数、碳源、反应温度、保温时间、成型压力、添加剂种类及数量等工艺参数对制备的A l2O3-SiC复相粉体的相组成和显微结构的影响。结果表明,反应温度、保温时间及氯化物添加剂对煤矸石碳热还原反应有显著影响。通过优化工艺,以煤矸石为基料,加入适量炭黑,在1 550℃3 h下制备出了w(A l2O3)=58%、w(SiC)=42%的复相粉体,其粒度d50≤5μm;加入适量添加剂,可降低合成温度50℃。  相似文献   

10.
对联还原锆英石中SiO2进行了温度、配碳量、时间和粒度的实验研究,得到相应的脱硅率的影响规律.建立了Si-C-O系中C-CO型优势图,讨论了SiO分压和StO2活度等对脱硅率的影响,得到温度与StO2最低含量的理论关系.配碳量为7.5%时的脱硅率达到极大值97.22%,在1873~2273K温度范围内的化学反应表现活化能为282.0kJ/mol,反应的主要限制环节是锆英石的热分解  相似文献   

11.
研究了ZrB2-SiC复合材料的凝胶注模成型技术。着重讨论了分散剂、pH值、固相体积含量、有机单体等对ZrB2-SiC复合材料料浆的影响;分析了凝胶注模成型后,排胶前复合材料素坯断面的显微结构以及相对应的烧结体的显微结构。结果表明:当分散剂用量为8.74‰(质量分数),pH为10.8,有机单体含量为3.1%时,可制得固相体积含量为40%,粘度为610mPa.s的ZrB2-SiC复合浆料,此时烧结体的断面主要以穿晶断裂为主;凝胶注模成型的坯体内部的有机聚合物网络因高温而完全分解,使素坯的气孔分布较均匀,利于烧结体致密度的提高。  相似文献   

12.
《Ceramics International》2019,45(11):13726-13731
Rod-like ZrB2 crystals were synthesized at 1600 °C in Ar atmosphere by boro/carbothermal reduction using ZrOCl2⋅8H2O, B4C and carbon powders as raw materials. The optimum molar ratio of raw materials required to form pure ZrB2 grains was found to be 2: 1.2: 3. With increase in temperature and subsequent heat preservation stage, ZrB2 powders grew into a rod-like morphology along the c axis. The rod-like ZrB2 grains obtained at 1600 °C have diameters of 0.5–3 μm and high aspect ratios of >8. Effects of molar ratio of raw materials, heating temperature and holding time on the phase composition and final morphology were investigated. Growth mechanism of rod-like ZrB2 grains was also analyzed.  相似文献   

13.
14.
为提高镁质含碳耐火材料中氧化镁的利用率,对该材料中的氧化镁进行提纯。以废弃镁质含碳耐火材料为原料,设计感应加热装置模型,利用感应炉加热系统对含碳原料加热,用碳热还原氧化法将废弃镁质含碳耐火材料中的氧化物在高温还原气氛下,还原成气相并在空气中氧化形成氧化镁粉体。经化学分析、XRD、SEM等测试发现,氧化镁粉体材料中氧化镁含量大于98%(质量分数),氧化镁粉体晶粒粒径为2~3μm,尺寸均匀。通过热力学分析,采用碳热还原氧化法还原生成的SiO气相在氧化过程中受到了Mg(g)、Ca(g)钙气相氧化的抑制作用。  相似文献   

15.
按照ZrB2和SiC的质量比为7525配料,混料、烘干、热压烧结后,经线切割加工成ZrB2-SiC复合陶瓷直型发热体,研究了发热体的物相组成、微观形貌及在空气和氩气气氛下发热温度随电流电压的变化规律。结果表明,ZrB2-SiC复合陶瓷由均匀分布在ZrB2基体晶界处的SiC颗粒和尺寸小于10μm的等轴状基体ZrB2颗粒组成;在空气和氩气气氛下,ZrB2-SiC复合陶瓷发热体的温度均随电流、电压及加热时间的延长呈稳步增大趋势,同时空气气氛下发热体的电阻随温度升高而增大,并呈现线性变化;在空气和氩气气氛下,ZrB2-SiC复合陶瓷发热体表面温度分别达到1800和2200℃。同时,与铬酸镧和氧化锆发热体相比,其电压、电阻变化较小,电流较大。  相似文献   

16.
溶胶-凝胶和碳热还原法制备碳化钛的研究   总被引:2,自引:0,他引:2  
黎茂祥  苏国钧 《无机盐工业》2007,39(7):36-38,47
以钛酸四丁酯和酚醛树脂为原料,乙二醇甲醚为溶剂,冰乙酸为稳定剂,在硝酸的催化下制备出凝胶前驱体,再将制得的前驱体于流通的氩气环境中经高温碳热还原得到碳化钛。讨论了各因素对凝胶时间的影响,用TG,XRD和SEM对制得的前驱体和产品进行了表征。结果表明,控制溶液的pH在2~3,水与钛酸四丁酯的物质的量比为6:1,溶剂与钛酸四丁酯的体积比为4:1时,得到的凝胶红棕色透明,所需时间最短;且由XRD和SEM分析可知,碳热还原反应是由TiO2经历一系列的低价态氧化物转变完成的;前驱体在氩气环境中经1400℃反应1h后生成的产物为TiC,其表面光洁,粒径分布均匀,大小为0.1~0.5μm。  相似文献   

17.
以TiO2、B4C、炭黑和硅溶胶为原料,采用碳热还原法合成了TiB2 -SiC超细复合粉末.对碳热还原反应过程进行了热力学分析和计算,采用XRD和SEM等研究了反应温度对合成TiB2-SiC复合粉末的物相组成和显微形貌的影响,并对合成的TiB2-SiC复合粉末的氧化性能进行了探讨.结果表明:TiB2-SiC复合粉末合成的适宜条件为在1600℃保温1h.在反应过程中,TiB2先于SiC形成,所合成的复合粉末由球状、片状、短棒状颗粒以及晶须等多样化结构组成.TiB2-SiC复合粉末的氧化过程中,首先是TiB2优先与氧发生反应生成TiO2和B2O3,然后是SiC与氧反应生成SiO2和CO,氧化产物中没有发现低熔点B2O3的存在.  相似文献   

18.
魏娟  王玉军  骆广生 《化工学报》2021,72(2):1156-1168
碳热还原氮化法是大规模制备高纯度氮化铝(AlN)粉体的主要方法,通过微反应器制备不同孔容的铝源,系统探究了前体孔容和微观形貌对AlN粉体产物的影响,并通过动力学模拟验证了筛选出的前体的活性。同时对氮化反应升温过程的影响也做了探究,最终通过对前体和焙烧升温过程的优化,得到纯度99%以上的AlN粉体,其平均粒径约为150 nm,O元素含量为0.55%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号