首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
等离子体技术用于回收聚丙烯亲水改性的研究   总被引:5,自引:2,他引:3  
试以等离子体技术、反应挤出方法制备马来酸酐接枝改性的回收聚丙烯(r-PP),希望在成本更低的r-PP表面引入极性基团,提高亲水性,使其更好地应用于纤维混凝土.用FT-IR、静态水接触角测试研究了改性PP的亲水性和时效性.结果表明:通过等离子体处理后接枝MAH的办法,r-PP接触角可以降至58.9°,进一步用等离子体表面处理,可以使材料接触角降至45.6°,但时效性仍然存在.  相似文献   

2.
严绘  董入贵  黄健  王晓琳 《水处理技术》2013,39(7):31-34,38
以1 W功率的Ar等离子体对聚丙烯(PP)多孔膜作了表面处理,通过失量法和扫描电镜(SEM)法研究了等离子体的气氛压力和处理时间的表面刻蚀作用,并以水通量法评价了PP膜多孔隙内部的改性状况。结果表明,表面刻蚀作用随着等离子体气氛压力的降低及处理时间的延长而增强。中等气氛压力(18 Pa或30 Pa)的等离子体处理可使PP膜均匀通水,表明具有适中能量水平以及活性粒子密度的等离子体气氛是实现多孔膜多孔隙内部均匀改性的重要因素。为实现PP膜多孔隙内部的均匀处理同时降低表面刻蚀作用,10min、18Pa的等离子体处理条件较为合适。处理表面产生的羧基改善了表面亲水性,但表面接触角在5 d内由44.2°急剧上升到了66.0°,之后1 a内变化平稳。  相似文献   

3.
多组分极性单体对PP制品表面亲水性能的影响   总被引:1,自引:1,他引:0  
通过在双螺杆挤出机中熔融接枝改性PP,研究了以1,1-二叔丁基过氧化-3,3,5-三甲基环己烷(LQ—CH335)为引发剂,马来酸酐(MAH)、丙烯酸(AA)、α-甲基丙烯酸(MAA)、丙烯酰胺(AM)和甲基丙烯酸缩水甘油酯(GMA)为接枝单体,苯乙烯(St)为接枝共聚单体的多单体熔融接枝体系对PP制品表面可涂敷性能的影响,并利用静态水接触角进行表征。研究结果表明,添加极性单体可以有效降低水接触角,当GMA、St和LQ—CH335的用量分别为PP质量的1.0%、1.0%和0.3%时,PP水接触角从108.6°降低到71.2°;同时在PP保险杠料中添加10%接枝PP,可以降低水接触角约20°。  相似文献   

4.
采用Ar-O2等离子体技术,以聚丙烯(PP)为基膜,用二乙烯三胺(DETA)作为改性剂,对PP膜进行表面活化接枝改性.利用傅立叶变换红外光谱(FTIR)、水接触角测量仪、扫描电子显微镜表征改性前后PP膜表面的官能团变化、亲水性、形貌以及时效性.结果表明,与未改性PP膜FTIR图谱相比,改性PP膜表面存在—NH2官能团,...  相似文献   

5.
采用丙烯酰胺接枝法对聚丙烯(PP)多孔膜表面进行亲水化改性,考察了硝酸浓度、接枝时间以及水解时间对膜结构和性能的影响。随硝酸浓度增加,接枝度先增后降,膜表面的水接触角先减小后增大;随接枝时间延长,接枝度先增加后几乎不变,水接触角先减小后趋于恒定;随水解时间延长,接枝度几乎不变,而水接触角先减小后趋于恒定。优选的亲水化改性条件下,PP多孔膜的接枝度为1 147μg/cm2,水接触角由124°降至47°。过膜压差为0.5MPa时,聚酰亚胺/PP纳滤复合膜的纯水通量和对1 g/L的Na2SO4溶液的截留率分别可达11.89 L/(m2·h)和92.86%。  相似文献   

6.
采用常压辉光放电等离子体处理硅水凝胶材料表面并引发2-甲基丙烯酰氧乙基磷酰胆碱(MPC)在其表面接枝聚合。硅水凝胶膜接枝MPC后,水接触角由103°下降到53°,表明接枝MPC后硅水凝胶材料具有良好的亲水性。采用四唑盐比色实验(MTT法)和直接接触细胞培养法评价材料对鼠成纤维细胞(1929)的细胞毒性,结果显示,与硅水凝胶一起培养的细胞生长状况良好,呈现较高的细胞相对增殖率,细胞毒性为1级,血小板粘附实验显示接枝MPC的硅水凝胶表面吸附的血小板数量明显减少。  相似文献   

7.
采用原位聚合的方法在氢氧化镁[Mg(OH)2]表面接枝聚合聚甲基丙烯酸甲酯(PMMA)。考察了PMMA包覆量对Mg(OH)2粉体的吸油值、水中的沉降速度、水接触角以及对阻燃PVC复合材料中的氧指数(LOI)、形貌结构及力学性能的影响。结果表明,随着PMMA包覆量的增加,粉体的吸油值及粉体在水中的沉降速度明显减小,水接触角明显变大。在PVC复合材料中的氧指数减小,但变化不大。形貌结构分析表明,PMMA经处理后粉体与PVC基体的相容性明显提高,力学性能由于粉体的加入量随着PMMA包覆量的增加而增多,导致拉伸强度和撕裂强度逐渐降低,断裂伸长率先增大后减小。  相似文献   

8.
为改善聚丙烯基木塑复合材料表面与涂料之间的附着效果,利用等离子体处理技术,对其表面进行处理。采用接触角测试、傅立叶变换红外光谱分析(FTIR)以及X射线光电子能谱分析(XPS)对处理前后复合材料表面的性能变化进行了分析,同时采用自动附着力测试仪对等离子体处理后复合材料表面与丙烯酸聚氨酯水性漆的附着效果进行了测试。研究结果表明,经等离子体处理后,聚丙烯基木塑复合材料的表面接触角减小,表面润湿性得到改善,表面有-OH、-C=O和-O-C=O等新官能团生成;XPS分析表明,经等离子体处理后,材料表面氧含量增加。漆膜附着力测试表明,等离子体处理后材料表面与丙烯酸聚氨酯水性漆的漆膜附着力有显著提高。  相似文献   

9.
采用丙烯酸等离子体处理聚醚醚酮(PEEK)表面,引入羧基(—COOH),并利用—COOH将具有生物活性的精氨酸甘氨酸天冬氨酸(RGD)肽化学键合在PEEK的表面;通过X射线光电子能谱仪、水接触角测量仪、表面轮廓仪和万能材料试验机对表面处理前后的PEEK进行表征,并采用MC3T3-E1成骨细胞来评价表面修饰的PEEK的细胞相容性。结果表明,—COOH被成功地引入至PEEK表面,并且RGD肽成功地键合在等离子体羧基化的PEEK表面;丙烯酸等离子体处理和RGD肽的修饰均改善了PEEK表面的亲水性,增加了其表面的粗糙度;等离子体处理和RGD肽的修饰均未影响PEEK的拉伸强度及弯曲强度;等离子体处理和RGD肽的修饰均能改善PEEK表面成骨细胞的黏附、铺展与增殖,但RGD肽修饰的PEEK表面对于促进细胞黏附、铺展与增殖的效果明显优于等离子体羧基化的PEEK表面。  相似文献   

10.
采用远程氩等离子体对聚四氟乙烯(PTFE)膜进行了表面改性研究,通过接触角测定仪、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等手段,分析研究了改性后材料表面结构、性能的变化。结果表明:PTFE表面经远程氩等离子体处理后,表面微观形态和表面化学成分均发生了变化,且处理效果优于常规氩等离子体。远程氩等离子体可以在一定程度上抑制电子、离子的刻蚀作用,强化自由基反应,使材料表面获得更好的改性效果。经远程氩等离子体短时间(100s)处理后,PTFE表面的F/C比例从1.97降至1.44,O/C比例从0.015增至0.086;表面的水接触角从108°减小到53°;表面自由能从22.4×10-5N·cm-1增加至52.3×10-5N·cm-1。  相似文献   

11.
The aim of this research was to determine the influence of argon plasma treatment condition on the surface properties of poly(ethylene glycol) diacrylate (PEGDA)–hydroxyethly methacrylate hydrogel films, a kind of scaffold materials for tissue engineering. The changes of surface properties have been evaluated by contact angles, X‐ray photoelectron spectra (XPS), and scanning electron microscopy (SEM). From the contact angle measurements of different liquids, the surface free energy of the hydrogel was calculated according to approaches by Owens–Wendt–Kaelble. Results showed that the contact angle of the hydrogel to water decreased remarkably after argon plasma treatment, which was caused by the changes in morphology (SEM images) and chemical composition (XPS results) of the argon plasma‐treated surface. The surface free energy increased with the increase of the argon plasma treated time and power, and these increasing was mainly due to the increase of polar component. The XPS results confirmed that plasma oxidation reaction produced oxygen‐containing functional groups onto the surface. This functional group played an important role in increasing the hydrophilic properties of the hydrogel. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
To improve the interfacial adhesion between evaporated copper film and low‐density polyethylene (LDPE) film, the surface of LDPE films was modified by treating with chromic acid [K2Cr2O7/H2O/H2SO4 (4.4/7.1/88.5)]/oxygen plasma. Chromic‐acid‐etched LDPE was exposed to oxygen plasma to achieve a higher content of polar groups on the LDPE surface. We investigated the effect of the treatment time of chromic acid in the range of 1–60 min at 70°C and oxygen plasma in the range of 30–90 sec on the extent of polar groups created on the LDPE. We also investigated the surface topography of and water contact angle on the LDPE film surface, mechanical properties of the LDPE film, and adhesion strength of the evaporated copper metal film to the LDPE film surface. IR and electron spectroscopy for chemical analysis revealed the introduction of polar groups on the modified LDPE film surface, which exhibited an improved contact angle and copper/LDPE adhesion. The number of polar groups and the surface roughness increased with increasing treatment time of chromic acid/plasma. Water contact angle significantly decreased with increasing treatment time of chromic acid/plasma. Combination treatment of oxygen plasma with chromic acid drastically decreased the contact angle. When the treatment times of chromic acid and oxygen plasma were greater than 10 min and 30 sec, respectively, the contact angle was below 20°. With an increasing treatment time of chromic acid, the tensile strength of the LDPE film decreased, and the film color changed after about 10 min and then became blackened after 30 min. With the scratch test, the adhesion between copper and LDPE was found to increase with an increasing treatment time of chromic acid/oxygen plasma. From these results, we found that the optimum treatment times with chromic acid and oxygen plasma were near 30 min and 30 sec, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1677–1690, 2001  相似文献   

13.
The effects of aging temperature and time on the adhesion properties of oxygen plasmatreated low-density polyethylene (LDPE) were investigated. As the aging temperature and time increased, surface rearrangement and the migration of molecules containing polar functional groups into the bulk were accelerated to the surface to form a hydrophobic surface. The adhesion strength of oxygen plasma-treated LDPE/aluminum joints was measured using a 90° peel test by varying the plasma treatment time and aging temperature. The adhesion strength was constant, regardless of the plasma treatment time. As the aging temperature increased, the adhesion strength of the LDPE/aluminum joints decreased and the locus of failure changed from cohesive to interfacial failure. It was also found that the polar functional groups buried in the bulk could be reoriented to the surface in a polar environment. This study also investigated whether repeated oxygen plasma treatment would increase the concentration of polar functional groups at the surface and reduce the surface rearrangement and the migration of molecules containing polar functional groups during aging. Contact angle measurements and X-ray photoelectron spectroscopy (XPS) showed that repeated oxygen plasma treatments increased the concentration of polar functional groups at the surface. However, the aging time between plasma treatments had a negligible effect on the concentration of polar functional groups at the surface.  相似文献   

14.
This work deals with characterization of polypropylene (PP) exposed to plasma discharge and gold layers deposited on the plasma modified PP. PP foils were exposed to Ar plasma and subsequently metallized with sputtered Au layer. Chemical structure of the plasma modified PP was studied using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering (RBS). Wettability of the plasma modified PP and its changes during sample aging were determined by goniometry. Surface morphology of PP and deposited Au layers was measured with atomic force microscopy (AFM). Continuity of Au layers was characterized by measuring their sheet resistance. With increasing exposure time in the plasma discharge the water contact angle decreases and the polymer surface becomes more hydrophilic. During the aging of the plasma treated samples the contact angle increases again. Plasma treatment leads to a decrease of the PP surface roughness and to generation of oxygen-containing polar groups on PP surface. During sample aging the concentration of the oxygen-containing groups decreases.  相似文献   

15.
Oxygen plasma treatment of polypropylene (PP) surfaces led to introduction of oxygencontaining functionalities, with consequent improvement of surface wettability. A combination of X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), and contact angle measurements (water-in-air and air-in-water) allowed us to characterize the behavior of the treated surface in contact with air (low-energy surface) and water (high-energy surface). The treated surface showed the tendency to rearrange itself to minimize its interfacial energy. When contacted with air (low-energy surface), polar groups were buried away from the polymer/air interface, while in contact with water (high-energy surface) polar groups remained at the polymer/water interface. When contacted with air, the polymer surface layer rearranged by macromolecular motions within itself, since interdiffusion with the bulk polymer seems forbidden. These motions are thermally activated and it was possible to obtain an apparent activation energy (58.1 kJ/mol) close to those reported for other vinyl polymers.  相似文献   

16.
A change in the surface energy and surface resistivity of a thin film of polypropylene (PP) of thickness 100 μm was investigated, using direct current (DC) glow discharge. The thin film of the PP was treated for various discharge powers and treatment time and the modification in the surface energy and the surface resistivity was observed. To investigate the modification in the surface energy after DC glow discharge treatment, contact angle of two test liquids formamide and de‐ionized water over the surface of PP film was measured. By measuring the contact angle the change in surface energy and its two polar and dispersive components have been measured. It was observed that at a given power level of DC glow discharge surface energy and its polar component increases with increase of the treatment time, attains a maximum value, and then becomes almost constant. Correspondingly, with increase in surface energy, a decrease in surface resistivity was observed. Also, a change in surface morphology was observed by atomic force microscopy and by FT‐IR spectra generation of polar groups at the surface of PP film. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 767–772, 2007  相似文献   

17.
陈亏  高晶  俞建勇  还伟海  马一梓 《化工学报》2011,62(4):1170-1173
采用He等离子体对膨化聚四氟乙烯(ePTFE)薄膜进行表面亲水处理,并引发接枝丙烯酸单体实现持久亲水改性.实验探究了不同等离子处理工艺和接枝工艺对ePTFE薄膜亲水性能的影响,并利用接触角、X光电子能谱(XPS)进行表征.研究结果表明,等离子体预处理后,ePTFE薄膜表面的接触角由145°降至102°;再接枝丙烯酸单体...  相似文献   

18.
Oxygen plasma-treated quenched and annealed polypropylene (PP) films with different crystallinities were investigated to characterize the surface rearrangement behavior during aging using contact-angle measurements and X-ray photoelectron spectroscopy. Optimum plasma conditions were examined by varying the power, time and pressure. Less crystalline quenched PP showed a larger increase in water contact angle and a larger decrease of oxygen atomic concentration during aging than the more crystalline annealed PP, since the oxygen species, such as hydroxyl groups, introduced by oxygen plasma treatment, oriented towards or diffused faster into the bulk with lower crystallinity. The degree of crosslinking on the surface was enhanced after plasma treatment and, in addition to increased crystallinity, the crosslinked structure induced by plasma treatment restricted chain mobility and lowered the aging rate of the PP surface.  相似文献   

19.
Plasma treatment of PET films was carried out under argon, followed by exposure to an oxygen atmosphere. The films underwent considerable changes in surface composition and morphology, as demonstrated by contact angle measurements, FTIR‐ATR, AFM, and XPS. It was found that the surface acquired oxygen containing polar functional groups such as —C=O, —OH, and —OOH, which increased in number as the plasma treatment time increased. During storage, the treated films underwent significant surface reorganization, and both the time and temperature contributed to the increase in the contact angle. As revealed by AFM measurements, these changes were accompanied by an increase in roughness in the form of ridges. The ridges were observed to grow in height with increasing treatment time, although their spacing showed little evolution. A correlation among the observations obtained from various techniques was established, giving a comprehensive picture of the structure and dynamics of plasma‐treated PET surfaces. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1083–1091, 2000  相似文献   

20.
In this work, PEGylated chitosan derivatives were prepared and used to modified poly(ethylene terephthalate) (PET) fabrics. PET fabrics surface were etched by oxygen plasma before different concentrations PEGylated chitosan derivatives solution treatment. The effects of oxygen plasma and PEGylated chitosan derivatives on the surface properties of PET fabrics are investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Surface wettability was monitored by water contact angle measurement and moisture regains. The results showed that the occurrence of oxygen‐containing functional groups (i.e., C?O, C? O, and ? OH) of the plasma‐treated PET and the surface coarseness increased from those of the untreated one. There was a layer film formed on the surface of PET fabrics after PEGylated chitosan modification. The combination treatment of oxygen plasma with PEGylated chitosans lightly lowered the breaking strength and elongation of PET fabric. That moisture regains increased and the contact angle decreased implied the hydrophilicity enhancement for the PET fabrics. In addition, dyeing property of PEGylated chitosan derivative modified PET was improved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39693.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号