首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
U3Si2-Al燃料元件板力学性能试验研究   总被引:1,自引:0,他引:1  
对研究堆使用的不同规格的U3 Si2 Al弥散型复合燃料板元件的力学性能参数进行了试验研究和分析 ,同时结合板型燃料组件的结构特点对燃料板在组件运行期间可能受到的拉、压、弯的承载能力进行了测试研究。研究结果表明 :国内生产的板状元件在其拉伸性能、结构抗力等方面基本达到了国外类似燃料的水平 ,满足了研究堆的设计要求。  相似文献   

2.
U3Si2-Al板状燃料组件是一种推广应用的新型燃料元件,在国内首次应用。燃料组件的各项性能,特别是热稳定性必须通过实验验证。通过对铀密度为3.02 g/cm3的U3Si2-Al燃料板的热稳定性试验,得到:热稳定性试验会使燃料板的体积略有增大;120℃及250℃的热循环下,燃料板无明显变形,表面无变化,400℃的热循环下,燃料板略有弯曲,个别芯体裸露的燃料板表面有起泡现象;循环温度越高,芯体中U3Si2颗粒开裂越严重等实验结论,为该燃料组件的结构设计、安全分析、加工工艺提供了关键参数,并为该组件的堆内运行提供了借鉴。  相似文献   

3.
U3Si2-Al燃料板拉伸力学性能试验研究   总被引:2,自引:0,他引:2  
以U3Si2-Al弥散型燃料为芯体、铝合金6061为包壳的燃料板是研究堆的新型燃料。燃料板的机械性能是燃料组件设计中的基础数据,国内外一直未对该燃料板的机械性能进行研究。本文根据国内研究堆燃料板设计的需要,对不同芯体的燃料板在不同工艺条件下的机械性能进行了测试,同时比较了不同方向的拉伸结果。为了进一步了解燃料板的机械性能,在拉伸过程中进行反复的加载试验。考虑到燃料板延伸率偏低和它的脆断状态.还用电镜检查了拉伸断口。  相似文献   

4.
用正电子湮没寿命谱仪对U3Si2-Al燃料板样品的正电子湮没寿命进行了测量及分析,得到不同工艺状况下燃料包壳材料微观缺陷的形态及变化趋势.回火态燃料板包壳基体中的微观缺陷以单空位的点缺陷为主;冷作态中的缺陷以双空位、位错等缺陷为主;冲刷态中的缺陷以层错、小的空位团等缺陷为主.3种样品中,均未发现影响燃料板安全的大空位团缺陷.回火和冲刷等工艺或运行工况,会使燃料板包壳基体中的微观缺陷发生转变,并改变了燃料板的宏观力学性能.  相似文献   

5.
通过对U3Si2-Al板状燃料组件的解体试验研究,得到了110 ℃水温、7 m/s流速下50 d的水力冲刷试验和18 m/s流速下的流致振动试验对该新型燃料组件各项参数的影响,为板状燃料组件的设计、选材、加工、应用提供了实验数据.  相似文献   

6.
7.
JP.  DURAND  B.  DUBAN  Y.  LAVASTRE  S.  de  PERTHUIS  朱常桂 《国外核动力》2006,27(6):3-5
该文总结了法国原子燃料研究和制造公司(CERCA)自1978年开始“研究试验堆降浓计划”(RERTR)以来至2003年25年间有关各种研究和材料试验堆所用的U3Si2燃料元件的制造和试验工作经验,强调了该公司是如何控制产品质量以确保满足与燃料安全有关的参数的。所获经验也被借鉴应用于UMo燃料的开发。  相似文献   

8.
U3Si2-Al弥散型燃料是一种成功的低浓铀燃料,但在较高温度和较深燃耗运行时,其抗辐照性能急剧下降;UMo-Al弥散型燃料可能使任何高性能研究堆改用低浓铀,可是燃料相与铝基体的广泛反应引起严重的肿胀,期待含硅的铝基体能成功阻止这种反应的发生;单片型UMo合金燃料板具有较好的抗辐照性能,但制造方法尚不成熟。所有这些问题都亟待解决。本文首先简介了研究堆低浓铀燃料的发展简史,分析了U3Si2-Al弥散型燃料的成就与不足,讨论了UMo合金燃料所遇到的问题与需要解决的途径,提出了U3Si2-Al、UMo-Al弥散型燃料和单片型UMo合金燃料板的研究现状。  相似文献   

9.
燃料组件是中国先进研究堆(CARR)的核心部件,燃料组件设计成平板型,使用低浓铀U3Si2-Al弥散体燃料.经多项堆内外验证试验证明在设计要求条件下,燃料组件结构稳定,使用安全.  相似文献   

10.
为了更准确标定U_3Si_2-Al燃料元件的γ射线吸收系数,论文设计了不同标样进行了单独定标和联立定标。利用不同标定方法获得的γ射线吸收系数进行燃料元件U_3Si_2、Al质量厚度的测试,并将测试结果分别与化学分析结果进行对比。实验结果表明,以燃料元件作为标样的联立定标法在保证Al测量精确的同时提高了U_3Si_2的测量精度。  相似文献   

11.
介绍了U3Si2-Al弥散型燃料的辐照肿胀机理。将弥散型燃料的芯体视为连续基体中的微型燃料元件,应用裂变气体的行为机理描述燃料相中的气泡形成过程。研究结果表明:燃料相的肿胀引起燃料颗粒和金属基体之间的力学相互作用,金属基体能抑制燃料颗粒的辐照肿胀。在一定辐照条件下,本模型对燃料元件辐照肿胀的预测值与测量值相符。  相似文献   

12.
为进一步提高U3Si2-Al燃料元件U3Si2均匀性检测结果的可靠性,文章建立了一种检测U3Si2-Al燃料元件U3Si2均匀性的"单能窄束γ射线法"。该方法利用γ谱仪测量241Am的59.5 ke Vγ射线穿透燃料元件前后的透射强度,再根据物质的γ射线吸收公式和单次测量区域内U3Si2、Al总体积恒定的特性建立方程组,求解方程组得出U3Si2、Al各自的体积百分数进而得出分布均匀性。文章利用MCNP法和实测法对该检测方法进行了验证,结果表明:该方法具有工程可行性且实验检测相对精度达到3.99%。该方法为燃料元件燃料均匀性检测提供了一种新思路。  相似文献   

13.
In the course of the licensing procedure of the ‘Forschungsneutronenquelle Heinz Maier-Leibnitz’, i.e. the new 20 MW high-flux research reactor FRM II in Garching near Munich, extensive test irradiations have been performed to qualify the U3Si2-Al dispersion fuel with a relatively high density of highly enriched uranium (93 wt% of 235U) up to very high fission densities. Two of the three FRM II type fuel plates used in the irradiation tests contained U3Si2-Al dispersion fuel with HEU densities of 3.0 gU/cm3 or 1.5 gU/cm3 (‘homogeneous plates’) and one plate had two adjacent zones of either density (‘mixed plate’). They were irradiated in the French MTR reactors SILOE and OSIRIS in the years before 2002. The local plate thickness was measured on certain tracks along the plates during interruptions of the irradiation. The maximum fission density obtained in the U3Si2 fuel particles was 1.4 × 1022 f/cm3 and 1.1 × 1022 f/cm3 in the 1.5 gU/cm3 and 3.0 gU/cm3 fuel zones, respectively. In the course of the irradiations, the plate thickness increased monotonically and approximately linearly, leading to a maximum plate thickness swelling of 14% and 21% and a corresponding volume increase of the fuel particles of 106% and 81%, respectively. Our results are discussed and compared with the data from the literature.  相似文献   

14.
在研究堆中的辐照条件下,U3Si2-Al 弥散型燃料的燃料颗粒和基体界面发生相互扩散。由于相互扩散反应,在每个 U3Si2颗粒的周围形成 U3Al7Si2反应层。反应层厚度随辐照时间和裂变密度而增加。反应层的形成造成了 U3Si2燃料和铝基体的消耗。该过程导致燃料芯体几何结构的演化。根据弥散体中燃料的随机分布特点,作者采用蒙特卡罗方法发展了燃料芯体结构演化的模拟方法。每个颗粒的特性都可以用直径和位置来表示。芯体结构参数包括颗粒尺寸分布、制造状态下的燃料体积分数、反应层厚度、反应层体积、U3Si2燃料体积分数、铝体积分数、接触几率和颗粒相互连接分数。特别是对于制造状态下的燃料体积分数为 43%时,颗粒尺寸较好地服从正态分布。模拟了在 6 mm×6 mm×0.5 mm 的芯体体积中 13 000 个抽样颗粒的情况下,各芯体结构参数随反应层厚度从 0~16 μm 变化时的函数变化情况。  相似文献   

15.
U3Si2-Al弥散型燃料板制备工艺对力学性能的影响   总被引:1,自引:0,他引:1  
U2Si2-Al弥散型燃料板元件是一种新型低浓化的研究堆燃料,该元件制备工艺复杂,使用环境特殊,加工环节对弥散型燃料板力学性能影响较大,而弥散型燃料板的力学性能优劣是保证研究堆可靠使用的必要条件。本文针对现有的U2Si2-Al弥散型燃料板元件在不同热处理时的纵横力学性能进行了测试和分析研究。结果表明,弥散型复合燃料板芯体中的铀含量越高,燃料板的强度越低,现有退火工艺对燃料板的影响极大。由此,本文提出了改善燃料板力学性能参数的热处理方法的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号