首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The aim of these experiments was to determine the state of maturity of dorsal root ganglia and axons in opossums (Monodelphis domestica) at birth and to assess quantitatively changes that occur in early life. Counts made of dorsal root ganglion cells at cervical levels showed that the numbers were similar in newborn and adult animals, approximately 1,600 per ganglion. In cervical dorsal root ganglia of newborn animals, division of neuronal precursors cells had ceased. The number of axons in cervical dorsal roots was similar in newborn and adult animals (about 4,500). For each ganglion cell body, approximately three axons were counted in the dorsal root. At birth, dorsal roots contained several bundles about 30 microns in diameter consisting of small axons (0.05-2 microns in diameter). A few non-neural cells were identified as Schwann cell perikarya, each enclosing a number of neurites. Later, marked changes occurred in Schwann cells and in their relationship to axons in the roots. Thus, at 12 days, an increase occurred in the number of Schwann cells and fibroblasts, and the bundles had enlarged to about 80 microns with little increase in axon diameter (0.1-2 microns). By 18 days, the bundles were larger, and myelination had already started. At 23 days, the dorsal root contained more than 500 myelinated axons that could reach 5 microns in diameter. The adult dorsal root enclosed about 900 myelinated axons. Throughout this time, the relationship between the Schwann cells and axons changed. Together, these results indicate that the number of axons and cell bodies of sensory dorsal root ganglia in opossum do not show major changes after birth. In addition, these results set the stage for quantitative studies of regeneration of dorsal column fibers in injured neonatal opossum nervous system.  相似文献   

2.
The ability of transplanted Schwann cells to modify the sprouts formed by cut central axons, and in particular to induce branching and extension of axon sprouts, is an encouraging sign for their possible future use in repair. The accessibility of the Schwann cells in the culture stage before transplantation offers a practical opportunity for genetic engineering (e.g. to introduce genes directing the expression of specific growth factors) which might be useful in designing a future method for the repair of human spinal injury. It must be borne in mind, however, that even the most successful cases of peripheral nerve grafts have shown only a limited proportion of axons growing back from the grafts into the environment of the CNS (Carter et al., 1989). When we constructed Schwann cells transplanted into the thalamus (Brook et al., 1994), we did not observe axons leaving the artificial tracts. In our experiments with Schwann cells transplanted into the spinal cord (Li & Raisman, 1994), the axons have only been studied within the graft, and we have as yet not been able to assess the extent to which they re-enter the CNS. For effective regeneration to occur, regenerating axons must not only be able to re-enter their original pathways and elongate along them, but also leave them in a correct manner--i.e. by making appropriate choices from a wide range of destinations. Therefore the effectiveness of a Schwann cell "bridging" repair must depend upon the self-organising capacity of the adult CNS (e.g. Florence et al., 1996).  相似文献   

3.
Newly transected or denervated segments of isogeneic rat tibial nerve were implanted into the rat midbrain and sampled at weekly intervals up to 6 weeks post-operation. By 3 weeks, the peripheral nervous system (PNS) grafts were well-vascularized and contained Schwann cells, axons associated with Schwann cell processes, and macrophages. From 3 to 6 weeks, many axons within both the fresh and predegenerated grafts were myelinated by Schwann cells. The nerve fiber arrangement within the implant was similar to that of regenerating peripheral nerve in situ. The central nervous system (CNS) border of the implant was clearly demarcated by a rim of astrocytes behind which was a layer of regenerating oligodendrocytes and axons. Extending from the CNS margin were radial bridges of astroglial tissue which apprarently guided regenerating axons into the implant. Between the CNS and the PNS implant, abundant collagen deposition was present. The findings suggest that regenerating CNS axons grow via astroglial bridges into transplanted PNS tissue and are capable of stimulating the implanted Schwann cells to form myelin. Even Schwann cells deprived of axonal contact for prolonged periods were still capable of PNS myelin formation.  相似文献   

4.
Axons of the mammalian central nervous system do not regenerate spontaneously after axonal injury, unlike the central nervous system axons of fish and amphibians and the peripheral nervous system of mammals, which possess a good regenerative ability (Grafstein: The Retina: A Model for Cell Biology Studies, Part II, 1986; Kiernan: Biol Rev 54:155-197, 1979; Murray: J Comp Neurol 168:175-196, 1976; Ramón y Cajal: Degeneration and Regeneration of the Nervous System, 1928; Reier and Webster: J Neurocytol 3:591-618, 1974; Sperry: Physiol Zool 23:351-361, 1948). It was previously believed that intrinsic differences between the central nervous system neurons of mammals and fish account for their differences in regenerative ability. The past decade, however, has seen an accumulation of evidence, indicating that mammalian central nervous system neurons are able to regenerate injured axons, at least to some extent. This was first demonstrated by Aguayo and colleagues (David and Aguayo: Science 214:931-933, 1981; Kierstead et al: Science 246:255-257, 1989), who showed that injured mammalian central nervous system axons can grow for a considerable distance into an autograft of a peripheral nerve. It was also demonstrated that injured rabbit optic axons can regenerate into their own environment (i.e., into the distal part of the injured optic nerve), if the injured nerve is treated so as to make it conducive for growth (Lavie et al: J Comp Neurol 298:293-314, 1990; Eitan et al: Science 264:1764-1768, 1994).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Mechanisms inducing gliosis following injury in the central nervous sy stem are poorly understood. We evaluated the effect of axonal injury on astrocyte and Schwann cell proliferation and morphology in vitro. Purified rat dorsal root ganglion neurons grown on monolayers of rat neonatal cortical astrocytes (N-ASneonatal cultures) or sciatic nerve-derived Schwann cells (N-SC cultures) were mechanically injured. Non-injured cultures served as controls. Cell proliferation near lesions was monitored by autoradiography 1,2,4, and 8 days postinjury. Axonal injury caused a significant transient increase in astrocyte proliferation immediately proximal and distal to the lesion. The lesion did not induce marked changes in the intensity of glial fibrillary acidic protein (GFAP) immunoreactivity. However, processes from GFAP-positive cells usually arranged in random fashion in noninjured cultures were aligned perpendicularly to the cut distal to lesions. Ultrastructural analysis in lesioned N-ASneonatal cultures indicated that proximal to the lesion filament-filled astrocytes were intermingled with axons. Distal to the lesion astrocyte processes formed layers, between which an increased amount of collagen-like material appeared with time postlesion. Axons distal to the lesion degenerated by 2 days, coinciding with the early disappearance of neurofilament immunoreactivity. In noninjured and proximally in injured N-SC cultures, Schwann cells extended processes, engulfing some axons. Distal to the lesion, Schwann cells appeared more rounded and neurites remained until 4 days postinjury. Media conditioned by injured or non-injured N-ASneonatal cultures did not affect neuron-induced Schwann cell proliferation. These findings demonstrate that axonal injury and degeneration cause a transient increase in astrocyte proliferation and induce morphological changes in astrocytes consistent with the onset of gliosis.  相似文献   

6.
This review focuses on the regrowth of respiratory pathways after nerve grafting within the central nervous system of the adult rat. After a general presentation of the background and of the grafting procedure, we summarize our nerve grafting results of while it is now well established that severed axons of adult central neurons can regenerate within segments of peripheral nerve partially implanted within the brain or spinal cord, the functional properties of the regenerating neurons remain generally unknown. With a view to assessing the extent to which the functional capacities of central neurons can be maintained after axonal regeneration, we have carried out experiments on central respiratory neurons which are a good example of a highly organized neuronal network with characteristic patterns of spontaneous discharge. We have shown that axonal regrowth of central respiratory neurons was successfully induced in blind-ended medullary and spinal autografts implanted respectively within the respiratory centers of the medulla oblongata and within the cervical spinal cord at the level of descending respiratory pathways. The grafts consisted of true "supplementary nerve" in which normal afferent and efferent respiratory pathways were confirmed by recording respiratory unitary discharges from teased fibers within the grafts. The efferent discharges reflected the activity of central respiratory neurons that had regenerated axons within the grafts: these neurons manifested spontaneous activity and normal responsiveness to respiratory stimuli that resemble those of normal respiratory cells. In order to evaluate the possibility of experimental nerve banking, the feasibility of using short-term and long-term stored nerves as potential spinal nerve grafts was established using in vitro pre-degenerated nerve and cryopreserved nerve grafts after assessment of Schwann cell viability. The extent of respiratory reinnervation of the different grafts (medullary, spinal and stored nerve grafts) was compared. The discussion focuses on the main data and the strategy for future nerve grafting is evoked: functional characteristics of regenerating respiratory axons, extent of graft reinnervation, functional schwann cell survey within stored/grafted nerve and post-traumatic grafting.  相似文献   

7.
The ability of Schwann cells to induce the regeneration of severed olivocerebellar and Purkinje cell axons across an injury up to their deafferented targets was tested by transplanting freshly dissociated cells from newborn rat sciatic nerves into surgically lesioned adult cerebella. The grafted glial cells consistently filled the lesion gap and migrated into the host parenchyma. Transected olivocerebellar axons vigorously regenerated into the graft, where their growth pattern and direction followed the arrangement of Schwann cell bundles. Although some of these axons terminated within the transplant, many of them rejoined the cerebellar parenchyma beyond the lesion. Here, their fate depended on the territory encountered. No growth occurred in the white matter. Numerous fibres penetrated into the granular layer and formed terminal branches that remained confined within this layer. A few of them, however, regenerated up to the molecular layer and formed climbing fibres on Purkinje cell dendrites. By contrast, the growth of transected Purkinje cell axons into the grafts was very poor. These results underscore the different intrinsic responsiveness of Purkinje cell and olivocerebellar axons to the growth-promoting action of Schwann cells, and show that the development and outcome of the regenerative phenomena is strongly conditioned by the spatial organization and specific features of the environmental cues encountered by the outgrowing axons along the course they follow. However, Schwann cells effectively bridge the lesion gap, induce the regeneration of olivocerebellar axons, and direct their growth up to the deafferented host cortex, where some of them succeed in reinnervating their natural targets.  相似文献   

8.
Loss of motoneurons results in a decrease in force production by skeletal muscles and paralysis. Although it has been shown that missing motoneurons of rats can be replaced by embryonic homotopic neurons, attempts to guide their axons to their target muscles that have lost their innervation have been unsuccessful. In this study attempts were made to guide axons from grafted embryonic motoneurons to their target via a reimplanted ventral root. Adult hosts that received an embryonic graft prelabelled with 5-bromo-2'-deoxyuridine had their L4 ventral root avulsed and reimplanted into the spinal cord. Three to six months later, neurons that had their axons in the L4 ventral ramus were retrogradely labelled with fast blue and diamidino yellow. In five animals that had received an embryonic graft 116 +/- 16 cells were retrogradely labelled, and of these at least 15% were of graft origin, since they were positive for 5-bromo-2'-deoxyuridine. In five animals that had their L4 ventral root reimplanted but did not receive a graft, only 12 +/- 1.3 cells were retrogradely labelled. However, meaningful functional recovery could be achieved only if the regenerating axons of embryonic motoneurons found in the L4 ventral ramus were able to reverse the loss of force of muscles that had lost their innervation. This study shows that axons of embryonic motoneurons grafted into an adult rat spinal cord, as well as some axons of host origin, can be guided to denervated hindlimb muscles via reimplanted lumbar ventral roots. In normal rats approximately 30 motor axons innervated the extensor digitorum longus and 60 innervated the tibialis anterior via the L4 ventral root. In rats that did not receive a graft only 3.7 +/- 1.2 axons reached the extensor digitorum longus and 3.5 +/- 0.4 reached the tibialis anterior muscle via the implanted L4 ventral root. In animals that had an embryonic graft, 7.6 +/- 0.5 axons innervated the extensor digitorum longus and 8.5 +/- 0.5 reached the tibialis anterior muscle via the implanted root. In rats without a transplant the maximum tetanic tension elicited by stimulating the implanted L4 root was 16 +/- 7 g for the extensor digitorum longus and 53 +/- 36 g for the tibialis anterior muscle, whereas the corresponding muscles in animals that had an embryonic graft developed 82 +/- 16 and 281 +/- 95 g respectively. Thus it appears that the grafted motoneurons contributed to the innervation and functional recovery of the denervated muscles.  相似文献   

9.
In adult mice, most fibres in the cervical sympathetic trunk (CST) are unmyelinated whereas a large proportion of sural nerve fibres are myelinated. This study of nerve grafts in syngeneic mice was designed to determine if Schwann cells originating from the unmyelinated CST would produce myelin when in contact with regenerating axons of the sural nerve. Quantitative microscopy of triated thymidine-labelled CST segments grafted to unlabelled sural nerve stumps revealed that, one month after grafting, previously unmyelinated grafts contained many myelinated fibres. By phase and electron microscope radioautography, nearly 40% of the myelin-producing cells in the reinnervated graft were shown to have originated in the unmyelinated CST. These findings indicate that Schwann cells originating from unmyelinated fibres are able to differentiate into myelin producing cells.  相似文献   

10.
The complex nervous networks found throughout the mammalian gut--the enteric nervous system--are histologically, ultrastructurally, and, to some extent, functionally--similar to the central nervous system. The glial cells of the small enteric ganglia are generally classified as Schwann or satellite cells, since they are found in the peripheral nervous system, possess nuclei which ultrastructurally resemble those of Schwann cells and are derived from the neural crest. However, it has been argued that these cells resemble astrocytes of the central nervous system with respect to gross and fine structure, and their relationship with the enteric neurones and their processes. In immunohistochemical studies of these cells, both in frozen sections of gut wall and in tissue culture preparations of the enteric plexuses, we found evidence that the enteric glial cells are rich in glial fibrillary acidic protein (GFAP), a protein associated with the 100 A glial intermediate filaments, and hitherto believed to be specific to astrocytes of the central nervous system only.  相似文献   

11.
Recent magnetic resonance imaging (MRI) and magnetic resonance spectroscopic (MRS) techniques have focused the attention of the multiple sclerosis (MS) research community on reanalysis of classic pathological approaches that have suggested significant axonal injury in this demyelinating disease. There now is abundant evidence from animal work that substantial "innocent bystander" damage to axons can occur with central nervous system (CNS) inflammation. Given the close interactions between axons and glia, it is no surprise that glial damage leads to secondary axonal changes. MRI, MRS, and MRS imaging studies have emphasized that axonal loss or damage in MS can be both substantial and early. The dynamic observations that are allowed by these noninvasive measures of pathology have demonstrated direct correlations between these axonal changes and disability, making a compelling case for increased emphasis on finding treatments of MS that may limit damage to CNS axons or salvage injured axons.  相似文献   

12.
In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the plasticity and the repair capacities of the mammalian spinal cord and of its muscular connections.  相似文献   

13.
Efforts to understand how the immune system can influence nervous system function are hampered by the complexity of mammalian nervous and immune systems. The marine mollusc Aplysia californica has recently emerged as a useful model system to investigate cellular mechanisms underlying neural-immune interactions. Aplysia has a relatively simple, well-characterized nervous system that is accessible for intracellular recording. Moreover, it shares with mammals basic cellular defensive responses to non-self or wounded-self, i.e. the accumulation of numerous defense cells (hemocytes) around foreign objects or at injured sites. We have shown that the excitability of a population of nociceptive sensory neurons in Aplysia can be influenced by the presence of hemocytes close to their axons. These sensory neurons also show profound, long-lasting increases in their excitability following axonal injury. Hemocytes are attracted to injured sites on peripheral nerves, and we have developed an in vitro nervous system-hemocyte coculture system to demonstrate that hemocytes can also influence the expression of this injury-induced sensory hyperexcitability. Immunoreactive interleukin-1 (IL-1) and tumor necrosis factor have been identified in Aplysia. Preliminary in vitro studies showing that IL-1 can modulate the expression of injury-induced sensory hyperexcitability raise the interesting possibility that hemocyte-derived cytokine-like factors can modulate sensory neuron functioning. The relevance of this work to more phylogenetically advanced organisms is also discussed.  相似文献   

14.
Numerous findings support the possibility that highly sulfated proteoglycans are inhibitory molecules which, at high concentration relative to growth-promoting signals, may regulate or guide axonal growth. Although most studies implicate sulfated proteoglycans in the poor regenerative capacity of the central nervous system, inhibitory proteoglycans also may play an important role in the successful regeneration of axons within peripheral nerve. Cultured rat schwannoma and Schwann cells produce chondroitin sulfate proteoglycan (CSPG) which binds to and inhibits the neurite-promoting activity of laminin [Muir et al. (1989) J. Cell Biol. 109:2353]. In the present study, we found a similar neurite-inhibiting activity associated with CSPG isolated from normal adult rat sciatic nerve. Following nerve crush injury, this inhibitory activity was increased sevenfold in regenerating nerve distal to the injury. This increase was largely attenuated by in vivo administration of the proteoglycan synthesis inhibitor beta-D-xyloside. In normal adult nerve, immunolabeling for CSPG core protein was concentrated in slender bands surrounding axon-Schwann cell units and within nodes of Ranvier. Following nerve crush injury, immunolabeling of CSPG and laminin became more intense in distal nerve and CSPG increased within endoneurium and surrounding nerve sheaths. Embryonic dorsal root ganglionic neurons cultured on longitudinal nerve sections extended neurites along the exposed surfaces of Schwann cell basal lamina. The length of neurites was increased 58% on normal nerve sections pretreated with chondroitinase. Even though laminin levels were elevated in basal lamina of injured nerve, neuritic growth on sections of injured nerve was not significant increased unless sections were pretreated with chondroitinase. These results indicate that inhibitory CSPG is up-regulated in injured nerve and plays a role in regulating axonal regeneration.  相似文献   

15.
The development of Schwann cells, the myelin-forming glial cells of the vertebrate peripheral nervous system, involves a neonatal phase of proliferation in which cells migrate along and segregate newly formed axons. Withdrawal from the cell cycle, around postnatal days 2-4 in rodents, initiates terminal differentiation to the myelinating state. During this time, Schwann cell number is subject to stringent regulation such that within the first postnatal week, axons and myelinating Schwann cells attain the one-to-one relationship characteristic of the mature nerve. The mechanisms that underly this developmental control remain largely undefined. In this report, we examine the role of apoptosis in the determination of postnatal Schwann cell number. We find that Schwann cells isolated from postnatal day 3 rat sciatic nerve undergo apoptosis in vitro upon serum withdrawal and that Schwann cell death can be prevented by beta forms of neuregulin (NRG-beta) but not by fibroblast growth factor 2 or platelet-derived growth factors AA and BB. This NRG-beta-mediated Schwann cell survival is apparently transduced through an ErbB2/ErbB3 receptor heterodimer. We also provide evidence that postnatal Schwann cells undergo developmentally regulated apoptosis in vivo. Together with other recent findings, these results suggest that Schwann cell apoptosis may play an important role in peripheral nerve development and that Schwann cell survival may be regulated by access to axonally derived NRG.  相似文献   

16.
17.
Little spontaneous regeneration of axons occurs after acute and chronic injury to the CNS. Previously we have shown that the continuous local delivery of neurotrophic factors to the acutely injured spinal cord induces robust growth of spinal and supraspinal axons. In the present study we examined whether chronically injured axons also demonstrate significant neurotrophin responsiveness. Adult rats underwent bilateral dorsal hemisection lesions that axotomize descending supraspinal pathways, including the corticospinal, rubrospinal, and cerulospinal tracts, and ascending dorsal spinal sensory projections. One to three months later, injured rats received grafts of syngenic fibroblasts genetically modified to produce nerve growth factor (NGF). Control subjects received unmodified cell grafts or cells transduced to express the reporter gene beta-galactosidase. Three to five months after grafting, animals that received NGF-secreting grafts showed dense growth of putative cerulospinal axons and primary sensory axons of the dorsolateral fasciculus into the grafted lesion site. Growth from corticospinal, raphaespinal, and local motor axons was not detected. Thus, robust growth of defined populations of supraspinal and spinal axons can be elicited in chronic stages after spinal cord injury by localized, continuous transgenic delivery of neurotrophic factors.  相似文献   

18.
The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional impairment. To induce axonal regeneration in the transected adult rat spinal cord, we have used the axonal growth-promoting properties of adult olfactory bulb ensheathing glia (EG). Schwann cell (SC)-filled guidance channels were grafted to bridge both cord stumps, and suspensions of pure (98%) Hoechst-labeled EG were stereotaxically injected into the midline of both stumps, 1 mm from the edges of the channel. In EG-transplanted animals, numerous neurofilament-, GAP-43-, anti-calcitonin gene-related peptide (CGRP)-, and serotonin-immunoreactive fibers traversed the glial scars formed at both cord-graft interfaces. Supraspinal serotonergic axons crossed the transection gap through connective tissue bridges formed on the exterior of the channels, avoiding the channel interior. Strikingly, after crossing the distal glial scar, these fibers elongated in white and periaqueductal gray matter, reaching the farthest distance analyzed (1.5 cm). Tracer-labeled axons present in SC grafts were found to extend across the distal interface and up to 800 microm beyond in the distal cord. Long-distance regeneration (at least 2.5 cm) of injured ascending propriospinal axons was observed in the rostral spinal cord. Transplanted EG migrated longitudinally and laterally from the injection sites, reaching the farthest distance analyzed (1.5 cm). They moved through white matter tracts, gray matter, and glial scars, overcoming the inhibitory nature of the CNS environment, and invaded SC and connective tissue bridges and the dorsal and ventral roots adjacent to the transection site. Transplanted EG and regenerating axons were found in the same locations. Because EG seem to provide injured spinal axons with appropriate factors for long-distance elongation, these cells offer new possibilities for treatment of CNS conditions that require axonal regeneration.  相似文献   

19.
C-erbB receptor/neuregulin signalling plays a significant role in Schwann cell function. In vivo, Schwann cells up-regulate expression of c-erbB receptors in the first month after injury, but receptor expression is down-regulated with time to levels that are not detectable immunohistochemically. The inability of chronically denervated Schwann cells to respond adequately to signals derived from regenerating axons may be one reason why delayed repair of an injured peripheral nerve frequently fails. We have examined the effects of GGF on denervated Schwann cells in vitro. A modified delayed dissociation technique was used to obtain adult rat Schwann cells from the distal stumps of transected sciatic nerves which had been acutely (7 days) or chronically (2-6 month) denervated. We found that in vitro denervated Schwann cells invariably expressed p75NTR and c-erbB receptors. There was a progressive decrease in total cell yield and the percentage of cells with Schwann cell phenotype (p75NTR and/S-100 or/laminin or /GFAP or/c-erbB positive); proliferation rate; migratory potential; and expression of the cell adhesion molecules N-CAM and N-cadherin, with increasing time of denervation. Addition of GGF2 had a significant stimulatory effect upon Schwann cell proliferation and migration, and an increased proportion of Schwann cells expressed N-CAM and N-cadherin, suggesting that these responses were mediated via GGF/c-erbB signalling. Our results support the view that it may be possible to manipulate chronically denervated Schwann cells so that they become more responsive to signals derived from regrowing axons.  相似文献   

20.
Enhancement of axon growth by detergent-extracted nerve grafts   总被引:1,自引:0,他引:1  
BACKGROUND: The immunogenicity of nerve allografts is responsible for their rejection. We have developed a method for preparing cell-free nerve grafts using lysophosphatidylcholine to remove cells, axons, and myelin sheaths. METHODS: The remaining intact nerve extracellular matrix is the extracted nerve graft (eNG). Cultured neonatal Schwann cells were micro-injected into the eNG to form recellularized nerve grafts (rNG). eNG, rNG, and normal isografts (15 mm long) were implanted in the peroneal nerves of F-344 rats. Ten rats were given an eNG on the right, and an isograft on the left. Ten rats were given an rNG on the right, and a sham operation on the left. Sham operation was used as the control and the isograft was used as the benchmark procedure. Walking track analysis was performed every 15 days after surgery to determine the peroneal functional index. Morphometric analysis of the distal peroneal nerve and extensor digitorum muscle weight were analyzed 3 months after surgery. RESULTS: The three types of grafted legs had the classical effect observed after peripheral nerve repair, with decreased functional ability, decreased target muscle weight, fewer large nerve fibers, and more small nerve fibers. Isografts, eNG, and rNG all had similar patterns of peroneal functional index improvement after implantation. The extensor digitorum longus muscle weight and axon counts for the three types of graft were not statistically different. Hence, eNG and rNG can enhance nerve regeneration in the same way as isografts. The host Schwann cells that invaded the implanted eNG probably acted in the same fashion as the cultured Schwann cells injected into the rNG and the resident cells of isografts. CONCLUSIONS: The great permeability of the longitudinally oriented matrix of eNG to cells is, therefore, a major advantage over the reported poor permeability of freeze-thawed nerve grafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号