首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study deals with staged absorption and desorption cooling systems which increase the performance of absorption cycles that are driven by only low-grade energy, particularly when the working fluids are NH3H20. Instead of working with only one absorber, these systems use a cascade of absorbers composed by one operating at the evaporator pressure, followed by a series of absorbers operating at staged pressures Pj, between Pev and Pc In the same way, a cascade of generators is used for desorption. For the same operating parameters for other equipment and the same COP, the systems that we propose permit the generators to run at temperatures below those of all other systems offered up to now and using the same working fluids. When Tev = −10°C, Ta = Tc = 30°C, the temperature of the generators can be as low as 65°C while the COP of the system is 0.258 and the COPex 0.317. By increasing the temperature of generators to 85°C while maintaining the other parameters at the same values, COP becomes 0.374 and the COP,, 0.336. These results improve the performance of absorption systems using only low-grade energy (T < 100°C). Particularly, they are better than the performance of two-stage absorption systems which consist of two single-stage absorption cycles coupled with each other through the evaporator of the first cycle and the absorber of the second cycle. With the same operating parameters indicated above for our system at the evaporator, the condenser, and the absorber, these coupled cycles need temperatures at generators of 80 and 100°C, whereas they give a COP of only 0.270  相似文献   

2.
This study deals with staged absorption and desorption cooling systems which increase the performance of absorption cycles that are driven by only low-grade energy, particularly when the working fluids are NH3---H20. Instead of working with only one absorber, these systems use a cascade of absorbers composed by one operating at the evaporator pressure, followed by a series of absorbers operating at staged pressures Pj, between Pev and Pc In the same way, a cascade of generators is used for desorption. For the same operating parameters for other equipment and the same COP, the systems that we propose permit the generators to run at temperatures below those of all other systems offered up to now and using the same working fluids. When Tev = −10°C, Ta = Tc = 30°C, the temperature of the generators can be as low as 65°C while the COP of the system is 0.258 and the COPex 0.317. By increasing the temperature of generators to 85°C while maintaining the other parameters at the same values, COP becomes 0.374 and the COP,, 0.336. These results improve the performance of absorption systems using only low-grade energy (T < 100°C). Particularly, they are better than the performance of two-stage absorption systems which consist of two single-stage absorption cycles coupled with each other through the evaporator of the first cycle and the absorber of the second cycle. With the same operating parameters indicated above for our system at the evaporator, the condenser, and the absorber, these coupled cycles need temperatures at generators of 80 and 100°C, whereas they give a COP of only 0.270  相似文献   

3.
The performance potential of 11 multistage, multi-effect absorption cycles is evaluated. They include water-lithium bromide, ammonia-water and cascade configurations. All evaluations are based on air-conditioning applications assuming a 4°C evaporator temperature and a 35°C condenser and absorber temperature. The sensitivity of the performance to the approach temperature in the heat exchanger was studied. Eight cycles were selected for a more detailed simulation. The highest COP at zero approach temperature was obtained for a three-stage water-lithium bromide cycle cascaded with two single-stage ammonia water cycles, while for approach temperatures of 5 K the best COP was obtained for the three-stage water-lithium bromide cycle.  相似文献   

4.
In this paper, a new solution cycle in the double absorption heat transformer is presented and the thermodynamic performance of this new cycle is simulated based on the thermodynamic properties of aqueous solution of lithium bromide. The results show that this new cycle is superior to the cycle being studied by some researchers. This new solution cycle has a wider range of operation in which the system maintains the high value of COP and has larger temperature lifts and operation stability. The relationship between the absorber and the absorbing evaporator is more independent and this makes the operation and control of the system more easier.  相似文献   

5.
A heat transformer is proposed in order to upgrade low-temperature-level energy to a higher level and to recover more energy in low-temperature-level waste heat. It is difficult to achieve both purposes at the same time using a conventional heat transformer cycle and classical working pairs, such as H2O–LiBr and HN3–H2O. The new organic working pair, 2,2,2-trifluoroethanol (TFE)-N-methylpyrolidone (NMP), has some advantages compared with H2O–LiBr and NH3–H2O. One of the most important features is the wide working range as a result of the absence of crystallization, the low working pressure, the low freezing temperature of the refrigerant and the good thermal stability of the mixtures at high temperatures. Meanwhile, it has some negative features like NH3–H2O. For example, there is a lower boiling temperature difference between TFE and NMP, so a rectifier is needed in refrigeration and heat pump systems. Because TFE–NMP has a wide working range and does not cause crystallization, it can be used as the working pair in the self regenerated absorption heat transformer (SRAHT) cycle. In fact, the SRAHT cycle is the generator–absorber heat exchanger (GAX) cycle applied in a heat transformer cycle. In this paper, the SRAHT cycle and its flow diagram are shown and the computing models of the SRAHT cycle are presented. Thermal calculations of the SRAHT cycle under summer and winter season conditions have been worked out. From the results of the thermal calculations, it can be found that there is a larger temperature drop when the waste hot water flows through the generator and the evaporator in the SRAHT cycle but the heating temperature can be kept the same. That means more energy in the waste heat source can be recovered by the SRAHT cycle.  相似文献   

6.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

7.
Thermodynamic analysis of LiBr–H2O single, double and triple effect vapour absorption cycles has been carried out using LPG and CNG as sources of energy. Optimization of operating temperatures in single to triple effect cycles has been carried out for maximum COP of the system and minimum gas requirement in it at desired temperatures in evaporator, absorber and main condenser using iterative technique. In single effect cycle, optimum temperatures in main generator have been obtained, while in double effect cycle, low pressure generator, high pressure condenser and main generator temperatures have been optimized. In triple effect cycle having three condensers and three generators, condenser temperatures (Tc3 and Tc4) and generator temperatures (Tg2, Tg3 and Tg) have been optimized. The maximum COP of triple effect cycle goes up to 1.955 which is around 132% higher than single effect cycle with its gas requirement reduced to around 122% at the same conditions.  相似文献   

8.
Generator temperatures in ammonia absorption systems at subfreezing evaporator conditions have been optimized to use the minimum volume of biogas required to operate two-stage dual-fluid cycles. In this dual-fluid cycle, a LiBr---H2O absorption system is used at the first stage with ammonia absorption systems at the second stage. Three different refrigerant-absorbent combinations (NH3---H2O, NH3---NaSCN, NH3---LiNO3) were selected for this study. The absorber at the second stage is cooled by the low temperature water-refrigerant from the evaporator at the first stage. Lowering the absorber temperature reduces the heat input to the generator, which lowers the generating temperature and improves the performance of the absorption systems at the second stage. The optimum generator temperatures and performance coefficients of the systems at the first and second stages and the overall two-stage dual-fluid cycles are presented graphically. A comparative study between the three ammonia systems used in the two-stage dual-fluid cycle has been carried out.  相似文献   

9.
Performance improvement of an industrial single-stage compression/absorption heat pump (CAHP) using an ammonia/water mixture as the working fluid has been studied theoretically. By allowing a higher absorber pressure (40 bar) than the highest design pressure of today's screw compressors (25 bar), higher COPs could be obtained. Longer falling-film tubes in the vertical shell-and-tube absorber and desorber also increased the COP. These two modifications together increased the COP of the CAHP by 10%. The improved design has a lower optimal absorber glide (temperature difference due to composition change in absorber) and reduced solution heat exchanger sizes. The study was performed with a constant total area. Furthermore, the CAHP performance was studied for five heating cases. Its performance was compared to that of a two-stage compression heat pump (CHP) using isobutane as working fluid, on the basis of approximately equal investment cost. It could be concluded that only heating cases where both the sink and the source temperature changes are high (>20 K) give superior performance for the CAHP.  相似文献   

10.
The objective of this study is to propose and evaluate advanced absorption cycles for the coefficient of performance (COP) improvement and temperature lift enhancement applications. The characteristics of each cycle are assessed from the viewpoints of the ideal cycle COP and its applications. The advanced cycles for the COP improvement are categorized according to their heat recovery method: condensation heat recovery, absorption heat recovery, and condensation/absorption heat recovery. In H2O–LiBr systems, the number of effects and the number of stages can be improved by adding a third or a fourth component to the solution pairs. The performance of NH3–H2O systems can be improved by internal heat recovery due to their thermal characteristics such as temperature gliding. NH3–H2O cycles can be combined with adsorption cycles and power generation cycles for waste heat utilization, performance improvement, panel heating and low temperature applications. The H2O–LiBr cycle is better from the high COP viewpoints for the evaporation temperature over 0°C while the NH3–H2O cycle is better from the viewpoint of low temperature applications. This study suggests that the cycle performance would be significantly improved by combining the advanced H2O–LiBr and NH3–H2O cycles.  相似文献   

11.
This article concerns two main studies: a parameter study and a comparison. In the parameter study, the CAHP is focused upon. Its COP sensitivity to changes in the absorber and desorber falling-film tube length, heat exchanger area distribution, and concentration change of the solution in the absorber is studied. The relative distribution between the desorber and absorber is found to have little impact on COP. The area distributed to the solution heat exchanger and the concentration change in the absorber is found to have a large impact on COP when examined separately, but when they are studied together, and with optimized concentration change for each area distribution, the total impact is low. It is shown that the falling-film tubes should be designed to be as long as possible in order to increase the COP.The comparison involves a new procedure for comparing the performance (COP) of a compression/absorption heat pump (CAHP) with that of a compression heat pump (CHP). In the procedure local heat transfer coefficients and pressure drop are taken into account. Further, the comparison is performed for various heating applications and with specified investment level. The heating applications are typically industrial or district heating cases and are chosen to study impact of three different kinds: size of the sink and source temperature change (glide), temperature lift for a given sink and source glide and temperature level for a given sink and source glide. Ammonia/water is used as working fluid in the CAHP and isobutane in the CHP. A relevant industrial design is assumed for the CHP (including an indirect economizer coupling, suction gas heat exchanger, sub-cooler and surface enhancements in evaporator and condenser), which is not the case in previous comparisons of this type. The absorber and desorber in the CAHP are modeled as vertical falling-film tube-and-shell heat exchangers. The main results for the comparison study are: (1) the COP of the CAHP is as good as that of the CHP when the sink and source glides are 10 K; (2) when the glide of the sink and source is increased to 20 K, the CAHP has a 12% better performance than the CHP; and (3) an increased temperature lift and an increased temperature level give the CAHP a relatively worse COP. Some COP-increasing design parameters to be studied further are proposed for the CAHP.  相似文献   

12.
The COP (Coefficient of Performance) of an ammonia-water absorption refrigerator can be significantly improved by incorporating a mixing column and a second absorber which is combined with a two-stage refrigerant expansion. At an internal temperature lift of 85 K (−20°C to + 65°C), these modifications result in a 50% higher COP for cooling—assuming ideal components. With real components, a 40% improvement may be achieved. The proposed cycle was realised in a laboratory test plant with a refrigeration capacity of 10 kW at −20°C evaporator temperature. This machine was operated at a solution temperature up to 225°C and a condenser temperature of 65°C corresponding to a pressure up to 3.0 MPa. COP versus temperature lift and load behaviour was tested. A COP of 0.38 was achieved at a temperature lift of 85 K. An efficient high-temperature lift cycle like that described in this paper may find applications for deep freezing, as a topping cycle to achieve triple-effect performance, or as a device to produce simultaneous heating and cooling.  相似文献   

13.
A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia–water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC – dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia–water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 °C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 °C governed these systems.  相似文献   

14.
The calculation of the performance of absorption heat pump cycles or the comparison of different types of machine cannot be done in a reasonable way without considering the first cost of the machine and especially the cost of the heat exchangers, as their area and particularly the distribution of the area between the respective components of the heat pump determine the COP. Therefore it makes sense only to compare machines that are optimized in this respect. A good way to evaluate cycles is to calculate the maximum COP in terms of the total cost of the heat exchangers. For that purpose a computer program was developed for different absorption heat pump cycles with water as refrigerant. The calculation method is simple and thus the result reliable. The program is suitable for evaluating double-lift, single-, double- and some triple-effect cycles, each one with different absorption fluids and with different options, such as different solution flows (parallel, serial), different types of absorber (spray- or falling-film absorber), and different types of generator (pool- or falling-film generator). With this instrument different cycles or similar cycles with different features can be compared. An economically significant estimation of the performance of a cycle working under defined conditions is possible.  相似文献   

15.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

16.
This study presents an experimental investigation of a solar thermal powered ammonia–water absorption refrigeration system. The focus of this study lies on the design of the components of the absorption chiller, the ice storages and the solar collector field as well as the integration of the data acquisition and control unit. An ammonia–water (NH3/H2O) absorption chiller was developed in the laboratory of the Institute of Thermodynamics & Thermal Engineering (ITW) at the University of Stuttgart (Germany). A demonstration plant was built in the laboratory of the CoRE-RE at King Fahd University of Petroleum & Minerals (KFUPM – Saudi Arabia). The whole system was tested successfully. The results of the experiments indicated a chiller coefficient of performance (COP) of 0.69 and a cooling capacity of 10.1 kW at 114/23/−2 (°C) representing the temperatures of the generator inlet, the condenser/absorber inlet and the evaporator outlet respectively. Even at 140/45/−4 (°C), the chiller was running with a cooling capacity of 4.5 kW and a COP of 0.42.  相似文献   

17.
In this paper, the energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption systems is presented. A computational model has been developed for the parametric investigation of these systems. Newly developed computationally efficient property equations of water–lithium bromide solution have been used in the computer code. The analysis involves the determination of effects of generator, absorber and evaporator temperatures on the energetic and exergetic performance of these systems. The effects of pressure drop between evaporator and absorber, and effectiveness of heat exchangers are also investigated. The performance parameters computed are coefficient of performance, exergy destruction, efficiency defects and exergetic efficiency. The results indicate that coefficient of performance of the single effect system lies in range of 0.6–0.75 and the corresponding value of coefficient of performance for the series flow double effect system lies in the range of 1–1.28. The effect of parameters such as temperature difference between heat source and generator and evaporator and cold room have also been investigated. Irreversibility is highest in the absorber in both systems when compared to other system components.  相似文献   

18.
This paper proposes a new working fluid for refrigeration cycles utilizing low temperature heat sources. The proposed working fluid consists of the ammonia–water working fluid mixture and a salt. The salt is used to aid the removal of ammonia from the liquid solution. This effect is a manifestation of the well known “salting-out” effect. While the addition of salt improves the generator performance, it also has a detrimental effect on the absorber. The overall effects on the performance of three absorption cycles using the NH3–H2O–NaOH working fluid have been investigated using computer simulations. The results indicated that salting out can lower the generator operating temperature while simultaneously improving the cycle performance. Furthermore, limiting the salt to the generator suggests potential for further improvement in cycle performance.  相似文献   

19.
This study aims to investigate experimentally the effects of three different heat inputs supplied to generator on the energy performance of the diffusion absorption refrigeration system. To achieve this goal, a conventional diffusion absorption refrigeration system, in which electrical resistance as heat input is employed, is taken a model, which is experimentally scrutinized under different heat inputs, 62, 80 and 115 W, but at the same ambient temperatures and the same filling rate of three-component working fluid. In the analyses, the energy losses rejected to ambient from rectifier, condenser, absorber, solution heat exchanger as well as other components such as solution tank and pipes, the energy gain by evaporator and also energy performance is investigated. While the highest energy performance is calculated for DAR-62 W system as 0.36, the lowest energy performance is calculated for DAR-115 W system as 0.30.  相似文献   

20.
The objective of this paper is to develop a new energy transport system for district cooling application by using type 2 absorption cycle. Cold energy from the LNG storage system is utilized as the cooling source of the condenser and the rectifier. The pressures of the system, UAs of the evaporator and the desorber, the inlet temperatures of the refrigerant for each component, transportation distance and the pumping power per unit length are considered as the key parameters. The results show that UA of the evaporator has more dominant effect on COP than that of the desorber. The optimum system pressure for the demand side is also determined. For the present system, it is recommended that the refrigerant inlet temperature of the evaporator be lower than 4.3 °C for long distance transportation. It is concluded that the cold energy from the LNG storage system can be effectively applied to the long distance transportation system for district cooling application with the type 2 absorption cycle. The maximum transportation distance and the pumping power per unit length are calculated. The optimum operation conditions are also predicted from the parametric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号