首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

2.
The formation of CuIn(S,Se)2 thin films by thermal diffusion of sulfur (S) and selenium (Se) vapours into co-sputtered Cu–In alloy within a closed-space graphite container is reported. All films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Four-point-probe and hot-probe measurements. Cu–In alloy films with composition varying from Cu-rich to In-rich were deposited. The synthesized In-rich films yielded CuIn5(S,Se)8 spinel compound which gradually transformed into a single phase CuIn(S,Se)2 as the film composition approached the Cu-rich region. The morphology of the CuIn5(S,Se)8 was found to differ from the stoichiometric and Cu-rich CuIn(S,Se)2 as observed from SEM. EDX composition analysis of the films showed a Cu/In ratio varying from 0.36 to 1.54 and a (S+Se)/(Cu+In) varying from 0.97 to 1.32. The amount of S incorporated in the films was found to differ with changes in the composition. The resistivity of the films ranged between 10−1 and 107 Ω cm and it strongly followed the change in the alloy film composition.  相似文献   

3.
Formation mechanism of CIS thin films by selenization of sputter deposited CuIn precursor with Se vapor was investigated by ex-situ and in-situ phase analysis tools. Precursor films were composed of In, CuIn and Cu2In compounds, and their relative fractions were systematically changed with Cu/In ratios. Those films were found to have a double layered structure with nearly pure In particles (top layer) placed on the flat Cu-rich bottom layer, and the morphologies were also significantly affected by Cu/In ratio. At the initial stage of selenization, the outer In-rich layer reacted with Se vapor to form In-Se binary, which is the first selenide phase appeared, and inner Cu-rich phases acted as a Cu source to supply Cu to outer In-Se phase to form ordered vacancy compounds (OVC). As these reactions continues, in conjunction with Se incorporation into inner Cu-rich region, the films gradually changes from OVC to α-CIS, reflecting that the formation route of CIS is closely related to the elemental and phase distribution in precursor films. Selenized CIS films were further processed to fabricate CIS thin film solar cells, resulting in the best cell efficiency of 10.44%.  相似文献   

4.
CuInSe2 thin films have been obtained by the sequential evaporation of Cu and In layers, and subsequent reaction at 400°C with elemental selenium vapor. The individual metallic film thickness and the substrate temperature during evaporation have been varied in order to promote intermixing and alloy formation before the selenization. The structure, morphology and photoelectrochemical activity of the CuInSe2 films have been determined by the characteristics of the evaporated metallic precursors. An improvement in the CuInSe2 quantum efficiency, related mainly to the increased homogeneity and smoothing of the sample surface, can be gained by using as precursors multiple stacked Cu–In bilayers evaporated onto unheated substrates.  相似文献   

5.
This paper reports the modifications made in the preparation techniques of getting CuInSe2 thin films starting with chemical bath deposited (CBD) selenium films. In the present study, CBD Se film was converted into CuInSe2 by stacked elemental layer (SEL) technique and also by thermal diffusion of Cu into In2Se3. In both the cases CBD Se films were used to avoid toxic Se vapor and H2Se gas. Improvements were made in these techniques through a detailed study, varying the composition of the films over a wide range by changing the Cu/In ratio. Structural, optical and electrical characterizations were performed. On comparing the material properties of CuInSe2 deposited by these two techniques, it was found that photosensitivity was better for samples prepared by thermal diffusion of Cu into In2Se3. So the technique of thermal diffusion of Cu into In2Se3 was found to be better than SEL technique in the preparation of CuInSe2 using CBD Se. Cu-rich, In-rich and nearly stoichiometric samples could be prepared by thermal diffusion of Cu into In2Se3. These samples were analyzed using energy dispersive spectroscopy, Raman spectroscopy and atomic force microscopy also.  相似文献   

6.
Gas phase selenization of vacuum deposited Cu and In thin films employing an elemental Se vapour source is demonstrated as an essential first step in the search for optimized process parameters for the formation of single phase CuInSe2 materials suitable for solar cell applications. The selenization was accomplished in Se vapour, derived from an elemental Se source, held at 240–260°C. This source was placed in a flow of nitrogen gas at 500 Torr to transport the Se vapour to the metal films. The selenization reaction readily occurs at Cu and In films kept at 340–400°C. Lower selenization temperatures invariably lead to the formation of Cu and In selenides with well defined crystalline microstructures. Hexagonal CuSe with an excess of Se in the matrix is the equilibrium growth phase, while the cubic Cu2−xSe phase evolves under conditions of excess Se flux. Selenization of the In films consistently led to the formation of the β-form of hexagonal In2Se3. At high selenization temperatures (400°C), while the β-form still emerges as the major component, traces of the α-form of In2Se3 are also detected. Detailed X-ray diffraction, electron probe analysis and microstructure data are presented.  相似文献   

7.
Various techniques have been used to produce CuInSe2 but the problem of producing films with the desired properties for efficient device fabrication over large areas has always persisted. The Stacked Elemental Layer (SEL) technique has been demonstrated as a method for producing films over a large area, but the films normally annealed in vacuum or in Se ambient, mostly exhibited poor morphology with small grain sizes which result in poor devices. A method of synthesizing CuInSe2 films by annealing or selenization of the Cu, In and Se elemental layers using a closed graphite box was developed. SEM, EDX, XRD, spectrophotometric and Hall measurements were used to characterize all annealed films. Results have shown single phase chalcopyrite films with improved crystal sizes of about 4 μm The film composition varied from Cu-rich to In-rich with electrical resistivities of 10−3 to 104 Ωcm, cattier concentrations of 5 × 1015 to 1017 cm−3 and mobilities of 0.6 to 7.8 cm2 V−1 s−1 An energy band gap of 0.99 eV and 1.02 eV was obtained for a Cu-rich and near stoichiometric In-rich films respectively. Heterojunction devices using the structure ZnO/CdS/CuInSe2 were fabricated with electrical conversion efficiencies of 6.5%.  相似文献   

8.
Polycrystalline CuInSe2 thin film solar cells were prepared by two methods: three-source evaporation and co-electrodeposition from a single bath. Structural and compositional characterization was carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The evaporation technique produced chalcopyrite CIS for stoichmetric and In-rich films while the Cu-rich films exhibited only the sphalerite phase. SEM analysis shows grain sizes of 0.5–0.7 μum for stoichmetric CIS. Electron diffraction also revealed the presence of CIS. It was found that sufficient Cu, In and Se could be co-electrodeposited from a single bath. EDS analysis showed that annealing resulted in the loss of Se. The adhesion of the film to the substrate depends critically on the current density and time of deposition.  相似文献   

9.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

10.
CuInSe2 thin films were prepared using sequential vacuum evaporation of In, Se and Cu at moderately low substrate temperatures, avoiding any treatment using toxic H2Se gas. The samples were annealed at 400 °C at a pressure of 10−5 mbar to form CuInSe2. Structural, optical, electrical, compositional and morphological characterizations were carried out on these films. We could obtain highly stoichiometric film, using this simple method, without opting for co-evaporation or high substrate temperature for deposition.  相似文献   

11.
The efficiencies of Cu(In,Ga)Se2/CdS/ZnO solar cell devices in which the absorbers are produced by classical two-step processes are significantly lower that those in which co-evaporated absorbers are used. A significant problem related to two-step growth processes is the reported segregation of Ga towards the Mo back contact, resulting in separate CuInSe2 and CuGaSe2 phases. Furthermore, it is often reported that material losses (especially In and Ga) occur during high-temperature selenization of metallic precursors. In this study, X-ray fluorescence (XRF) analysis was used to study the diffusion behaviour of the chalcopyrite elements in single-stage and two-stage processed Cu(In,Ga)Se2 thin films. This relatively simple characterization technique proved to be very reliable in determining the degree of selenium incorporation, possible material losses and the in-depth compositional uniformity of samples at different stages of processing. This information is especially important in the case of two-stage growth processes, involving high-temperature selenization steps of metallic precursors. Device quality Cu(In,Ga)Se2 thin films were prepared by a relatively simple and reproducible two-step growth process in which all the metals were evaporated from one single crucible in a selenium-containing environment. The precursors were finally treated in an H2Se/Ar atmosphere to produce fully reacted films. XRF measurement indicated no loss of In or Ga during this final selenization step, but a significant degree of element diffusion which depended on the reaction temperature. It was also possible to produce Cu(In,Ga)Se2 thin films with an appreciable amount of Ga in the near-surface region without separated CuInSe2 and CuGaSe2 phases.  相似文献   

12.
Thin films of compound CuInSe2 have been developed onto glass substrates by in situ thermal annealing of the stack of successively evaporated elemental layers in vacuum. The atomic compositions and the optical properties of the films have been determined by proton-induced X-ray emission (PIXE) method and spectrophotometry in the photon wavelength range of 300–2500 nm, respectively. The typical optical absorption characteristic of the films has been critically analysed. The absorption coefficients vary from 103 to 105 cm−1 in the measured wavelength range. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary between 0.947 to 0.989 eV and 1.099 to 1.204 eV, respectively, depending on the composition of the films. The former transition varies inversely with the Cu/In ratio while the latter shows no such dependence. Valence band splittings due to spin–orbit coupling converge towards the single-crystal value for the near-stoichiometric (NS) and Cu-rich films.  相似文献   

13.
Thin films of Cu–In–Ga–Se alloy system with various composition were prepared by thermal crystallization from In/CuInGaSe/In precursor. Electron probe microanalysis and X-ray diffraction study revealed that these samples were assigned to chalcopyrite Cu(In,Ga)Se2 or ordered vacancy compound Cu(In,Ga)2Se3.5. Solar cell with ZnO:Al/i–ZnO/CdS/Cu(In,Ga)Se2/Mo/soda-lime glass substrate structure was fabricated by using thermal crystallization technique, and demonstrated a 9.58% efficiency without AR-coating.  相似文献   

14.
Cu(In,Ga)(S,Se)2 thin films with high Ga/III ratio (around 0.8) were prepared by sequential evaporation from CuGaSe2, CuInSe2, In2Se3 and Ga2Se3 compounds and then annealing in H2S gas atmosphere. The annealing temperature was varied from 400 to 500 °C. These samples were characterized by means of XRF, EPMA, XRD and SEM. The S/(S+Se) mole ratio in the thin films increased with increase in the annealing temperature, keeping the Cu, In and Ga contents nearly constant. The open circuit voltage increased and the short circuit current density decreased with increase in the annealing temperature. The best solar cell using Cu(In,Ga)(S,Se)2 thin film with Ga/(In+Ga)=0.79 and S/(S+Se)=0.11 annealed at 400 °C demonstrated Voc=535 mV, Isc=13.3 mA/cm2, FF=0.61 and efficiency=4.34% without AR-coating.  相似文献   

15.
CuInSe2 films have been prepared using the selenization technique. Preparation of the precursor as well as selenization were carried out by the vacuum evaporation technique. The sequence of copper and Indium layer deposition during precursor preparation affects the morphological and structural properties of precursor which directly have effects on the properties of selenized CIS films. A thin layer of amorphous selenium at the substrate/film interface has been used to improve the adherence of the film. The effect of the Se under-layer has been studied on the layers of copper, indium, CuIn precursors and CIS films, using structural, morphological and optical properties. The surface morphology of a single layer of copper and indium, with and without the Selenium under-layer, are quite different and drastically affect the properties of the precursor and selenized films. The Se under-layer does not take part in the chemical reaction of CIS formation during the selenization process. The modified CIS films are uniform, single phase, polycrystalline, chalcopyrite with (1 1 2) preferred orientation showing an energy band gap of 0.99 eV and an absorption coefficient of 105 cm−1, and have good adherence to the substrate for the scotch tape test.  相似文献   

16.
Efficient Cu incorporated TiO2 (Cu–TiO2) photocatalysts for hydrogen generation were fabricated by four methods: in situ sol–gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition. All prepared samples are characterized by good dispersion of Cu components, and excellent light absorption ability. Depending on the preparation process, hydrogen generation rates of the as-prepared Cu–TiO2 were recorded in the range of 9–20 mmol h−1 gcatalyst−1, which were even more superior to some noble metal (Pt/Au) loaded TiO2. The various fabrication methods led to different chemical states of Cu, as well as different distribution ratio of Cu between surface and bulk phases of the photocatalyst. Both factors have been proven to influence photocatalytic hydrogen generation. In addition, the Cu content in the photocatalyst played a significant role in hydrogen generation. Among the four photocatalysts, the sample that was synthesized by in situ sol–gel method exhibited the highest stability. High efficiency, low cost, good stability are some of the merits that underline the promising potential of Cu–TiO2 in photocatalytic hydrogen generation.  相似文献   

17.
CuInSe2 (CIS) thin films with a range of Cu/In ratios were grown by molecular beam epitaxy on GaAs (0 0 1) at substrate temperatures of Ts = 450–500°C and the effects of annealing under various atmospheres have been investigated. Photoluminescence spectra obtained from an ex-situ vacuum annealed CIS film at a temperature of TA = 350°C showed a red-shift and a broadening of an emission peak (peak c) which originally appeared at 0.970 eV before annealing and the red-shifted peak c was found to consist of two overlapping peaks. The excitation power dependence of these overlapping peaks indicated the radiative recombination processes associated with the emissions to be a conduction band to acceptor transition (peak at 0.970 eV) and a transition due to donor-acceptor pairs (peak at 0.959 eV), indicating the formation of a shallow donor-type defect during the vacuum annealing process. The origin of this defect has tentatively been attributed to Se vacancies. On the other hand, the molar fraction of oxygen increased with increasing annealing temperature in dry-air. An epitaxially grown In2O3 phase was found both in Cu-rich and In-rich films annealed at TA 350°C, which was not observed in the films annealed in Ar atmosphere. Thermodynamic calculations based on the Cu---In---Se---O---N system showed In2O3 to be the most stable phase in good agreement with the experimental results.  相似文献   

18.
The compositional distribution of Ga and S in Cu(InGa)(SeS)2 films fabricated by a simultaneous selenization and sulfization process was systematically investigated. At low H2Se/H2S reaction temperature (490 °C), most Ga remains at the back of the film adjacent to the Mo back contact. However, the Ga/III ratios at the top and bottom of the Cu(InGa)(SeS)2 layer monotonically increase and decrease with reaction temperatures, respectively. At T>550 °C, homogeneous distribution of elemental Ga and In through film is achieved. Further increase of the reaction temperature (e.g., T>550 °C) causes phase segregation on the surface of the Cu(InGa)(SeS)2 film confirmed by XRD, GIXRD and EDS analysis.  相似文献   

19.
Structural and optical properties of In-rich Cu–In–Se polycrystalline thin films (0.54<In/(Cu+In)<0.78) prepared by chemical spray pyrolysis (CSP) on glass substrate have been systematically studied in terms of In/(Cu+In) ratio. Lattice constants a and c of the films decrease with increase of In/(Cu+In) ratio. The films exhibit a characteristic Raman peak shifting higher frequencies as the In/(Cu+In) ratio increases. Optical bandgap energy is approximately 1.22 eV for 0.54<In/(Cu+In)<0.67, but increases from 1.22 to 1.36 eV when the In/(Cu+In) ratio increases from 0.67 to 0.78. Photoacoustic measurements reveal the existence of high concentration of nonradiative centers introduced by the deviation from the stoichiometric composition.  相似文献   

20.
Cu/ZrO2, Ni/ZrO2 and bimetallic Cu–Ni/ZrO2 catalysts were prepared by deposition–precipitation method to produce hydrogen by oxidative steam reforming of methanol (OSRM) reaction in the range of 250–360 °C. TPR analysis of the Cu–Ni/ZrO2 catalyst showed that the presence of Cu facilitates the reduction of the Ni at lower temperatures. In addition, this sample showed two reduction peaks, the former peak was attributed to the reduction of the adjacent Cu and Ni atoms which could be forming a bimetallic Cu-rich phase, and the second was assigned to the remaining Ni atoms forming bimetallic Ni-rich nanoparticles. Transmission Electron Microscopy revealed Cu or Ni nanoparticles on the monometallic samples, while bimetallic nanoparticles were identified on the Cu–Ni/ZrO2 catalyst. On the other hand, Cu–Ni/ZrO2 catalyst exhibited better catalytic activity than the monometallic samples. The difference between them was related to the Cu–Ni nanoparticles present on the former catalyst, as well as the bifunctional role of the bimetallic phase and the support that improve the catalytic activity. All the catalysts showed the same selectivity toward H2 at the maximum reaction temperature and it was ∼60%. The high selectivity toward CO is associated to the presence of the bimetallic Ni-rich nanoparticles, as evidenced by TEM–EDX analysis, since this behavior is similar to the one showed by the monometallic Ni-catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号