首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

2.
3.
Thermal energy storage (TES) using phase change materials (PCMs) has recently received considerable attention in the literature, due to its high storage capacity and isothermal behaviour during the storage (melting or charging) and removal (discharging or solidification). In this study, a novel modification on a tube-in-shell-type storage geometry is suggested. In the proposed geometry, the outer surface of the shell is inclined and it is the objective of this study to determine the optimum range for the inclination angle of the shell surface. Paraffin with a melting temperature of 58.06°C, which is supplied by the Merck Company, is used as the PCM. The PCM is stored in the vertical annular space between an inner tube through which the heat transfer fluid (HTF), hot water, is flowing and a concentrically placed outer shell. At first, the thermophysical properties of this paraffin are determined through the differential scanning calorimeter (DSC) analysis. Temporal behaviour of the PCM undergoing a non-isothermal solid–liquid phase change during its melting or charging by the HTF are determined for different values of the inlet temperature and the mass flow rate of the HTF. The new geometry is shown to respond well with the melting characteristics of the PCM and to enhance heat transfer inside the PCM for a specific range of the shell inclination angle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Employment of latent heat storage unit (LHSU) utilizing phase change material (PCM) in a substantial scale is constrained by the poor thermal conductivity of PCMs. Future utilization of LHSU will therefore to a great extent rely on the heat transfer intensification techniques. Present research is on enhancement techniques in which heat transfer mechanism is altered without altering the mass of PCM and heat transfer surface area. The intensification mechanisms considered in the present research include imparting eccentricity to heat transfer fluid (HTF) pipe, imparting rotation to the LHSU and providing multi HTF tube. Numerical investigations are reported here towards comparative evaluation of the thermal characteristics associated with such intensification mechanisms for horizontal LHSU. In the present study stearic acid (melting point 55.7–56.6?°C) is used as PCM and water is used as HTF. Results infer that all the three mechanisms offer quicker melting rate. For the geometric configuration of LHSU considered in the present research, a reduction in melting time of 47.75% is evaluated for rotating LHSU. The rate of energy storage is higher for both eccentric and rotating LHSU. Solidification process is however not accelerated by such techniques. On the contrary, eccentric and multi HTF tube LHSU takes more time for solidification.  相似文献   

5.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

6.
Abstract

A latent heat thermal energy storage system with phase change material (PCM) is numerically studied. To enhance the heat transfer inside the system, a highly conductive metal foam is employed with ceramic nanoparticles. The latter method of enhancement leads to a new class of material called Nano-PCM. The system under investigation is a 70-L tank filled up with pure PCM or Nano-PCM and several pipes are situated where the heat transfer fluid (HTF) flows. The pipe surfaces are assumed at constant temperature above the PCM melting temperature to simulate the heat transfer from the HTF. The enthalpy-porosity theory is applied to simulate the PCM phase change, while the porous media formulation is assumed to describe the metal foam behavior. The nano-PCM is modeled with single-phase model where the properties are the weighted-average between the fluid base and the nanoparticles. The simulations are accomplished for charging-discharging process at different porosities and nanoparticle concentration. The results are given in term of average melting fraction evolution, average temperature as function of time, average stored energy. The metal foam significantly improves the heat transfer between PCM and HTF respect to the addition of nanoparticles, reducing the charging and discharging time more than one order of magnitude.  相似文献   

7.

Thermal energy storage performance of fatty acids and a eutectic mixture as phase change materials (PCMs) has been investigated experimentally. The selected PCMs for this study were palmitic acid, myristic acid, stearic acid, and a mixture of stearic and myristic acids in eutectic combination ratio of 65.7 wt% myristic acid and 34.3 wt% stearic acid. The PCMs have a melting temperature range of 50.0°C to 61.20°C and a latent heat range of 162.0 J/g to 204.5 J/g. The inlet temperature and the mass flow rate of heat transfer fluid (HTF) were selected as experimental parameters to test the thermal energy storage performance of the PCMs. The transition times, temperature range, propagation of the solid-liquid interface, as well as heat flow rate characteristics of the employed cylindrical tube storage system were studied at varied experimental parameters. The experimental results show that the melting front moves to inward in the radial directions as well as in the axial directions from the top toward to the bottom of the PCM tube. It was observed that the convection heat transfer in the liquid phase plays an important role in the melting process. The changes in the studied HTF parameters have more effect on the melting processes than the solidification processes of the PCMs. The average heat storage efficiency calculated from data for all the PCMs is 51.5%, meaning that 48.5% of the heat actually was lost somewhere.  相似文献   

8.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

9.
Micro‐phase change materials (micro‐PCMs) are proposed to increase the thermal conductivity and the thermal energy storage capacity of a heat transfer fluid (HTF). In this work, we have selected dimethyl terephthalate (DMT) to be used as a PCM for performance enhancement of a synthetic oil in the temperature range of approximately 100 to 170 °C. Silicon dioxide (SiO2) was used as the microencapsulant, because of its desirable properties as containment material, including thermal stability. The SiO2‐coated DMT micro‐PCM was characterized to determine relevant properties and its suitability for HTF performance enhancement. The SiO2‐coated DMT was found to completely disperse in the synthetic oil, Therminol SP, silicone oil, at and above 100 °C. FTIR, thermal diffusivity and differential scanning calorimetry measurements were carried out on the materials, and these tests demonstrated that the coated particles can be used for HTF enhancement in the temperature range of 100–170 °C and potentially higher temperatures if pressurized pipes/vessels are utilized. Using the measured thermal diffusivity and known data for density and specific heat capacity, the thermal conductivity of the micro‐PCM was calculated. Our calculations indicate that both the thermal conductivity and the thermal energy storage heat capacity of the HTF would be enhanced by the addition of this micro‐PCM. It is expected that the thermal conductivity increase will enhance the heat transfer of the fluid when in use at temperatures above and below the melting temperature of the PCM. At the melting point, the latent heat of the PCM will increase the thermal energy storage capacity of the fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

11.
Xin Xiao  Peng Zhang 《传热工程》2014,35(11-12):1084-1097
The charging and discharging characteristics of a latent thermal energy storage (LTES) system were experimentally studied. Pure paraffin and paraffin/expanded graphite (EG) composite containing 7% and 10% mass fraction of EG were used as the phase-change materials (PCMs). Various experiments were conducted with different heat transfer fluid (HTF) temperatures and flow rates for heat storage and retrieval, respectively. The time durations of the charging and discharging processes, the mean power, and the energy efficiency of the system, which are the important factors of the LTES system, were discussed. The results showed that natural convection played a crucial role in the heat transfer during the charging process of paraffin, but heat conduction was the main heat transfer mechanism during the discharging process of paraffin. The higher the flow rate was, the higher the charging and discharging rate would be. Large temperature difference between the HTF and the initial state of PCM would accelerate the charging and discharging processes. During the charging process, the large temperature difference would result in the accelerated phase-change process due to the enhanced natural convection that could be seen clearly when the PCM was paraffin. While no significant difference was found for different initial temperatures during the discharging process. The performance of the LTES was affected prominently by the PCMs, HTF temperatures, and flow rates. The energy efficiency was higher for the 10 wt% EG PCMs, and the mean power during the discharging process was larger accordingly.  相似文献   

12.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

13.
为分析相变蓄热装置在充热和放热过程中的热性能,设计并搭建一套相变蓄热供热装置中试实验系统,研究主要运行参数对相变蓄热装置热性能的影响;在此基础上,结合项目案例,对相变蓄热供热系统经济性进行分析。结果表明:相变材料(Phase Change Material, PCM)凝固过程中的传热主要受相变介质内部导热控制;而在其熔化过程中自然对流对传热起重要控制作用;蓄热装置充热速率快于放热速率。提高传热流体流量有助于增强PCM中的热传递,缩短充/放热时间,但蓄热装置内PCM温度分布均匀性有所降低;为降低系统能耗,提高储放热效率,优先选用小流量进行充/放热。该相变蓄热供热项目的动态投资回收期为3.55年,具有良好的经济性。研究结果可对相变蓄热供热系统的设计及应用推广提供参考依据。  相似文献   

14.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
A theoretical model was developed to predict the transient behavior of a shell-and-tube storage unit with the phase change material (PCM) on the shell side and the heat transfer fluid (HTF) circulating inside the tubes. The multidimensional phase change problem is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. The numerical predictions are validated with experimental data. A series of numerical experiments are then undertaken to assess the effects of various thermal and geometric parameters on the heat transfer process and on the behavior of the system. Results show that the shell radius, the mass flow rate, and the inlet temperature of the HTF must be chosen carefully in order to optimize the performance of the unit.  相似文献   

16.
This paper presents a detailed review of effect of phase change material (PCM) encapsulation on the performance of a thermal energy storage system (TESS). The key encapsulation parameters, namely, encapsulation size, shell thickness, shell material and encapsulation geometry have been investigated thoroughly. It was observed that the core-to-coating ratio plays an important role in deciding the thermal and structural stability of the encapsulated PCM. An increased core-to-coating ratio results in a weak encapsulation, whereas, the amount of PCM and hence the heat storage capacity decreases with a decreased core-to-coating ratio. Thermal conductivity of shell material found to have a significant influence on the heat exchange between the PCM and heat transfer fluid (HTF). This paper also reviews the solidification and melting characteristics of the PCM and the effect of various encapsulation parameters on the phase change behavior. It was observed that a higher thermal conductivity of shell material, a lower shell size and high temperature of HTF results in rapid melting of the encapsulated PCM. Conduction and natural convection found to be dominant during solidification and melt processes, respectively. A significant enhancement in heat transfer was observed with microencapsulated phase change slurry (MPCS) due to direct surface contact between the encapsulated PCM and the HTF. It was reported that the pressure drop and viscosity increases substantially with increase in volumetric concentration of the microcapsules.  相似文献   

17.
Latent heat thermal storage units span a wide and varied range of applications in the domestic, industrial and space based activities. Numerical investigations on the performance enhancement of a solar dynamic latent heat thermal storage (LHTS) unit employing multiple phase change materials (PCM) and fins are made. The LHTS unit has been studied for the charging mode alone. Enthalpy based formulation of the energy equations governing the behaviour of the LHTS system has been made and compared with the response of a single PCM unit. The governing conjugate equations have been solved employing finite difference techniques. The results show an appreciable enhancement in the rate of melting of PCM and nearly uniform exit temperature of heat transfer fluid (HTF) in the multiple PCM LHTS unit.  相似文献   

18.
This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.  相似文献   

19.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A horizontal double-pipe heat exchanger with an inverted outer equilateral triangular tube is modeled to numerically investigate the low-temperature thermal energy storage capability of an impure phase change material (PCM). The energy source fluid (hot water) flows through the inner tube and transfers heat to the PCM (heat sink) residing in the annular gap. The results show that the inlet temperature of the heat transfer fluid (HTF) has a significant effect on the melting process compared with the mass flow rate (MFR). The configuration, as well the concentricity/eccentricity of the inner tube has a great influence on the energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号