首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Julio Chaves 《Solar Energy》2010,84(2):196-207
A possible way to concentrate sun light is by using a Fresnel reflector: a large number of small mirrors (called heliostats) that mimic the behavior of a large concentrator, replacing it. These heliostats can move to track the sun, keeping its light concentrated onto the receiver. Fresnel concentrators, however, may have important losses. If the heliostats are spaced from each other, some light will miss them and be lost. If the heliostats are close to each other, they will block part of each other’s reflected light, also producing losses. One possible way to minimize these losses is to intersect two focusing Fresnel concentrators forming a Compact Linear Fresnel Reflector - CLFR. Although improving on a simple focusing Fresnel concentrator, these optics are still not optimal. Here new geometries for Fresnel reflectors are explored, minimizing their losses and increasing their concentration. This is achieved by changing the overall shape of the primary, making it a wave-shaped trough surface and/or by allowing for a variable size and shape of the heliostats as a function of the position in the heliostat field. These new Fresnel concentrators may also be combined with secondaries significantly improving their total concentration, which now approaches the theoretical maximum.  相似文献   

2.
The ray tracing equations for the beam-down solar concentrator have been derived in this paper. Based on the equations, a new module for the simulation of the beam-down solar concentrating system has been developed and incorporated into the code HFLD. To validate the ray tracing equations, a simple beam-down solar concentrating system consisting of 3 heliostats and a hyperboloid reflector is simulated. The concentrated spots at the lower focal point of the hyperboloid reflector for the beam-down system are calculated by the modified code HFLD and then compared with that calculated by the commercial software Zemax. It is found that the calculated results coincide with each other basically. Furthermore, a beam-down solar concentrator consisting of 31 heliostats, a tower reflector and a CPC is designed and simulated by using the modified code HFLD. The concentrated spots of the beam-down solar concentrator are calculated.  相似文献   

3.
Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator.  相似文献   

4.
塔式太阳能热发电站的聚光镜场大多是由按一定规律排列的矩形定日镜组成,在相邻定日镜间无机械碰撞的情况下,聚光镜场的最大土地利用率仅为58%。文章提出了选用规则交错排列的聚光镜场布置方案,建立不同形状定日镜的土地利用模型,并计算出不同情况下的最大土地利用率。通过仿真得出,矩形定日镜和六边形定日镜在一定长宽比时可获得最大土地利用率,其中六边形定日镜的土地利用率最高,约为100%。  相似文献   

5.
The total number of heliostats in the collecter field determines the approach to the optical simulation problem. For large central receiver systems, it is desirable to introduce a cell model which establishes an array of representative heliostats (see Ref.[1] for central receiver systems). We now have an arsenal of computer programs which allows us to optimize the arrangement of heliostats in the collector field subject to the approximations of the cell model. Each cell contains an arbitrary regular two dimensional array of heliostats. For practical reasons we have limited our current study of the 100 MWe commercial model to four categories of heliostats arrangement; (1) radial cornfields, (2) radial staggers, (3) N.-S. cornfields, and (4) N.-S. staggers.

The most important results from the 100 MWe commercial model optimization study are:

1. (1) Staggers are better than cornfields.
2. (2) The increased cost of the tower and receiver subsystems has moved the solution to a larger cell size and a shorter tower.
3. (3) No panels should be deleted from the south side of the cykindrical receiver, and
4. (4) The collector field trims to a 360° configuration.

The center of the collector field is north of the tower and some compromise may be made to prevent excessive panel power asymmetry. Currently, this problem is solved by using preheat panels in the southern part of the receiver.  相似文献   


6.
The multi-tower solar array (MTSA) is a new concept of a point focussing two-axis tracking concentrating solar power plant. The MTSA consists of several tower-mounted receivers which stand so close to each other that the heliostat fields of the towers partly overlap. Therefore, in some sectors of the heliostat field neighbouring heliostats are alternately directed to the receivers on different towers. This allows the MTSA to use radiation which would usually remain unused by a conventional solar tower system due to mutual blocking of the heliostats and permits an MTSA to obtain a high annual ground area efficiency (efficiency of usage of ground area). In the sectors close to the towers, where the shading effect predominates, all heliostats are directed to the nearest tower. In sectors further away from the towers, the heliostats are alternately directed to the receivers on two, three, or four different towers. To reduce dilution of the radiation from the field, the number of towers the heliostats in a specific region can be directed to may be limited to two, which causes almost no losses in the annual ground area efficiency.  相似文献   

7.
We present an approach to find optimal reflector shapes for non-tracking solar collectors under practical constraints. We focus on cylindrical absorbers and reflectors with translational symmetry. Under idealized circumstances, edge ray reflectors are well known to be optimal. However, it is not clear how optimal reflectors should be shaped in order to obtain maximum utilizable energy for given operating temperatures under practical constraints like reflectivity less than unity, real radiation data, size limits, and gaps between the reflector and the absorber. For a prototype collector with a symmetric edge ray reflector and a tubular absorber, we derive from calorimetric measurements under outdoor conditions the optical efficiency as a function of the incidence angle. Using numerical optimization and raytracing, we compare truncated symmetric edge ray reflectors, truncated asymmetric edge ray reflectors and free forms parametrized by Bezier splines. We find that asymmetric edge ray reflectors are optimal. For reasonable operating conditions, truncated asymmetric edge ray reflectors allow much better land use and easily adapt to a large range of roof tilt angles with marginal changes in collector construction. Except near the equator, they should increase the yearly utilizable energy per absorber tube by several percent as compared to the prototype collector with symmetric reflectors.  相似文献   

8.
太阳光不平行度对太阳能聚集性能影响的数值研究   总被引:4,自引:0,他引:4  
对大型对日定向的碟式太阳能反射聚集器,通过数值模拟研究了太阳光不平行度与定向跟踪精度对聚光性能的影响。通过建立锥形光束的概率模型,采用蒙特卡洛法直接模拟了太阳光经碟式反射聚集器后在焦平面上产生的能流分布。比较了不同定向跟踪精度下,不同口径比的反射聚集器对太阳光与平行光的聚集性能差别。  相似文献   

9.
We present secondary concentrators with non-regular shapes for increasing the concentration of radiation from a given field of heliostats, well suited for partitioning the receiver into several units, arranged side by side. For a general heliostat field with a non-axisymmetric directional distribution of the radiation at the entrance aperture of the secondary concentrator, concentrators with non-regular shape can significantly increase the concentration as compared to their symmetric analogs. Our optimizations indicate best results for concentrators based on rectangular entrance and exit apertures. The concentration may be increased by a factor of 2.3 at an optical efficiency of 90%. If the shape of the exit aperture is required to be close to circular, concentrators based on non-regular hexagonal apertures may reach concentration higher than their symmetric analogs by a factor of 1.3. For the given radiation, concentrators with polygonal apertures perform significantly better than concentrators with smooth elliptic apertures.  相似文献   

10.
Ari Rabl 《Solar Energy》1977,19(5):555-565
For the sake of good optical efficiency, the reflectivity of mirror surfaces in solar collectors should be as high as possible. Until now, most solar reflectors have used aluminum with values of in the 80–90 per cent range. Even the best material, silver, allows reflectivities only up to 95 per cent. With total internal reflection (TIR), on the other hand, the effective reflectivity is limited only by absorption in the transparent medium, and absorption losses can as easily be kept below 5 per cent. In certain solar collectors, conventional mirrors can be replaced by an array of small rectangular glass prisms, an optical trick well known from binoculars. The only problem is that TIR occurs for a restricted range of incidence angles, limited by the low value of the refractive index n 1.5 of commonly available glass or acrylic. However, an additional degree of freedom is gained in the design of solar collectors because only concentration, not imaging, is relevant. The suitability of TIR prismatic reflectors for solar energy collection is investigated systematically, and the following applications are found to be promising: (i) heliostats for central receiver; (ii) parabolic reflectors with point focus; (iii) line focus systems (both parabolic and Fresnel reflectors) tracking around north-south axis, provided the tilt of the system is adjusted seasonally; (iv) under some conditions, V- and Compound Parabolic Concentrators, in trough or cone geometry. (This is important for second stage concentrators which are to maintain high reflectivity when exposed to air at high temperatures.) Of course, reflection at the front surface of a prism will split any incident ray into separate rays which may leave the prism in two different directions. However, in all the designs considered here, all these rays will reach the absorber, and thus the effective reflectivity is indeed 100 per cent apart from absorption losses. Even if TIR fails at certain times of the day, prismatic reflectors may be advantageous in some applications; one can place a metallic reflector behind the prism to avoid leakage of radiation, and thus one can obtain an effective reflectivity which surpasses that of a conventional reflector.  相似文献   

11.
One of the most interesting approaches to the large scale development of solar energy for electric power production is the Central Receiver System Concept. The Central Receiver System contains a large number of individually guided heliostats that reflect sunlight towards a central receiver high above the field of heliostats. The system resembles a giant Fresnel mirror and provides a substantial concentration of the solar beam. If high concentration is desired, a terminal concentrator may be included.The terminal concentrator is a device designed to increase the concentration of solar flux reflected from the collector field. Our study depends on two assumptions: (1) the beam width formula for the reflected beams and (2) the uniformly bright collector field which is a gross simplification allowing us to deal with the terminal concentrator. We obtained the necessary design relations, including a lower bound for the rim angle φm, the average fraction reflected ?m), a radiative stagnation temperature for the aperature, and the concentration ratios. The temperature and concentration ratio curves determine the optimum rim angle φm for each of several designs. When designed to provide maximum concentration, the terminal concentrator becomes excessively large. Consequently, we consider a design which produces 90 per cent of the maximum concentration and reduces the size of the conical reflector by 5–6 times. The effectiveness of this compromise design permits us to conclude that a practical terminal concentrator of the conical variety can almost double the concentration without any appreciable loss of total power. There will be losses due to reflectivity but not due to beam spillage because of the reduced aperture. The terminal concentrator will be economically desirable for small central receiver systems if it is cheaper than the incremental cost of the heliostat field due to the additional focusing required to produce the same concentration.  相似文献   

12.
The parabolic trough solar concentrating system has been well developed and widely used in commercial solar thermal power plants. However, the conventional system has its drawbacks when connecting receiver tube parts and enhancing the concentration ratio. To overcome those inherent disadvantages, in this paper, an innovative concept of linear focus secondary trough concentrating system was proposed, which consists of a fixed parabolic trough concentrator, one or more heliostats, and a fixed tube receiver. The proposed system not only avoids the end loss and connection problem on the receiver during the tracking process but also opens up the possibility to increase the concentration ratio by enlarging aperture. The design scheme of the proposed system was elaborated in detail in this paper. Besides, the optical performance of the semi and the whole secondary solar trough concentrator was evaluated by using the ray tracing method. This innovative solar concentrating system shows a high application value as a solar energy experimental device.  相似文献   

13.
When striving for maximum efficiencies in solar thermal central receiver systems (CRS) the use of gas turbines with bottoming cycles is inevitable. Pressurized volumetric receivers have proven their feasibility and good performance, and their integration into gas turbine cycles has been demonstrated. One disadvantage of this system is the necessity to use secondary concentrators. The sunlight has to be concentrated into the relatively small glass windows of the receiver, which leads to a limited view cone. This means that of all the possible heliostat positions around the tower, only those within the ellipse, resulting from the section boundary of the view cone with the ground plane, are usable.For small systems, for which tower costs are small, the resulting heliostat field layout is similar, with or without secondary concentrator. For large systems, which are more cost-effective, tower costs become significant, and the losses due to atmospheric attenuation and spillage dominate over the cosine losses. Thus, the purely North-oriented fields become increasingly sub-optimal.This article shall demonstrate at what power levels this problem can be alleviated by not using a single, North-oriented aperture, but up to six apertures—each of them associated with a separate heliostat field.  相似文献   

14.
Surface slope error of concentrator is one of the main factors that influence the performance of the solar concentrated collectors which cause deviation of the reflected ray and reduce the intercepted radiation. This paper presents the general equations to calculate the standard deviation of the reflected ray error from that of slope error through geometry optics analysis, applying the equations to calculate the standard deviation of the reflected ray errors in five kinds of solar concentrated reflector, and providing typical results. The results indicate that the reflected ray errors at one direction may come from the optic errors of both directions when the incidence angle is more than 0. The error transfer from the surface slope to a reflected ray is enlarged to more than twofolds in the heliostats, solar troughs, and linear Fresnel solar energy collecting system. The equation for the reflected ray errors is generally fit for all reflection surfaces without refraction, and can also be applied to control the errors in designing an abaxial optical system.  相似文献   

15.
Compound parabolic concentrator(CPC) is a representative among solar concentrators, one of whose disadvantage is that the concentration ratio limits the half acceptance angle. Based on this, researchers put forward a novel structure, named the lens-walled CPC. This paper reviews the design and development of lens-walled CPC. The structure of the symmetric and asymmetric lens-walled CPC and the improved ones are presented, and their indoor and outdoor performances are also illustrated. The lens-walled CPC has a larger half acceptance angle and a more uniform flux distribution that is suitable for PV application. Furthermore, the life-cycle assessment for building integrated with PV is performed and it shows that the energy payback time of such integrated system has a significant advantage. In addition, future research areas are also indicated that may provide more functions and more stable performance. The design methods and developmental directions given in this study would provide many references in solar optical research and solar concentrator optimization.  相似文献   

16.
针对塔式太阳能热发电站中定日镜跟踪装置的跟踪精度不高、构建成本较大等问题,提出采用将遗传算法的选择机制与吸热塔能量变化的反馈机制相结合的方式对光热电站的太阳能跟踪控制系统进行改进.在光热电站的少数几台定日镜上配备光电检测元件,并以其控制角度为基准控制其他定日镜的角度调整.采用DSP(digital signal processing)为控制核心,完成了跟踪控制器的通讯框架及控制系统的硬件电路设计.实验表明,该方案在保证光热电站整体控制精度的基础上,减少了光电检测元件安装数量和电站构建成本,并保证了视日轨迹跟踪控制时的自动调整能力.  相似文献   

17.
The fixed mirror solar collector (FMSC) fixes reflector and mobiles receiver to collect solar energy. However, this type of concentrator has a low efficiency and short operating duration in practical applications. In this paper, we propose to install the FMSC on an azimuth tracking device (ATFMSC) and the reflectors are arranged by intermission to avoid the shading of neighbor reflector for incidence angle of less than 10° to improve its optical performance. Through the integration of the reflected solar radiation distribution function over any reflection point, and then the whole collector aperture, we develop the analytical expressions of various system efficiencies to numerically simulate the performance of ATFMSC with evacuated tube receiver in different design parameters. It is validated by the ray tracing results. The result shows that the mean annual net heat efficiency of the whole system would be up to 61% with the operating temperature of 400 °C, which is higher than parabolic trough collector and traditional FMSC. This is because the longitudinal incidence angle of ATFMSC always remains zero by tracking the sun azimuth, so the end loss of the concentrator can be avoided and enables it to operate with high efficiency continually.  相似文献   

18.
H.F. Chiam 《Solar Energy》1981,26(6):503-509
A systematic study has been made of the effectiveness of planar specular reflectors for solar energy collectors. Two daily averaged indices of performance were used. One, the area ratio, indicates the amount by which the reflector extends the effective receiver area. The other is the enhancement factor, which is used to compare the energy received by an augmented collector with that by a reference collector at optimum tilt.

A reflector can be mounted either above or below a flat-plate collector. Both combinations are evaluated fully, by varying separately the angular position and dimensions of the reflector and of the collector. The principal parameters are identified and the main characteristics summarised as a series of performance curves. These curves provide an easy method for determining optimum reflector geometries.

Use of the performance curves may be extended to obtain the configuration of the two reflectors in a trough concentrator. This also allows the single-reflector system to be compared directly with the trough concentrator. Evidence is presented which shows the advantages of an asymmetrical trough configuration over a symmetrical concentrator.  相似文献   


19.
提出一种塔式太阳能热发电系统中定日镜调度的方法。根据太阳、定日镜和接收面的光学成像关系,考虑太阳位置、镜面反射率和能见度等因素给出了镜场光能转换效率的计算方法,同时结合定日镜场状态及热力系统所需光功率建立了镜场调度模型。该文将定日镜的调度转化为一个0-1背包问题,设计了一种混合遗传算法来对其求解。采用该调度方法可得到各时刻转换效率最高时所需调用的定日镜数量及其分布,并可调整定日镜瞄准接收靶上分布的目标点,使吸热器上能流分布均匀,降低峰值能流密度,避免过热故障。仿真算例结果表明了该方法的有效性。  相似文献   

20.
In this paper, a small non‐imaging focusing heliostat is presented, and an analytical model for assessing its performance is described. The main novelty of the system lies in the tracking mechanism and the mirror mount, which are based on off‐the‐shelf components and allow a good trade‐off between accuracy and costs. The concentrator mirrors are moved by this two‐axis tracking machinery to reflect the sun's rays onto a fixed target, the dimensions of which can be varied to suit the user's needs. A prototype plant to be located in central Italy was designed and simulated with a ray‐tracing algorithm, and it comprises 90 heliostats for a total reflective area of 7.5 m2. The reflected solar rays are tracked taking the mechanical positioning errors of the tracking system into account. The total flux of radiation energy hitting the target was determined, and intensity distribution maps were drawn. Simulations showed that the system's optical efficiency can exceed 90% in summer, despite the tracking errors, mainly because of the smaller distance between the heliostats and the receiver. The solar concentration ratio over a receiver of 250 mm in diameter reached 80 suns with a very good uniformity. Over a 400‐mm receiver, the concentrated radiation was less uniform, and the solar concentration ratio reached 50 suns, with a higher optical efficiency and collected solar radiation. The present concentration ratio is still suitable for many applications ranging from the electric power production, industrial process heat, and solar cooling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号