首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Human replication protein A (RPA; also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. While the role of RPA in replication has been well studied, its function in repair is less clear, although it is known to be involved in the early stages of the repair process. We found that RPA interacts with xeroderma pigmentosum group A complementing protein (XPAC), a protein that specifically recognizes UV-damaged DNA. We examined the effect of this XPAC-RPA interaction on in vitro simian virus 40 (SV40) DNA replication catalyzed by the monopolymerase system. XPAC inhibited SV40 DNA replication in vitro, and this inhibition was reversed by the addition of RPA but not by the addition of DNA polymerase alpha-primase complex, SV40 large tumor antigen, or topoisomerase I. This inhibition did not result from an interaction between XPAC and single-stranded DNA (ssDNA), or from competition between RPA and XPAC for DNA binding, because XPAC does not show any ssDNA binding activity and, in fact, stimulates RPA's ssDNA binding activity. Furthermore, XPAC inhibited DNA polymerase alpha activity in the presence of RPA but not in RPA's absence. These results suggest that the inhibitory effect of XPAC on DNA replication probably occurs through its interaction with RPA.  相似文献   

2.
Prions are thought to consist of infectious proteins that cause transmissible spongiform encephalopathies. According to overwhelming evidence, the pathogenic prion protein PrPSc converts its host encoded isoform PrPC into insoluble aggregates of PrPSc, concomitant with pathological modifications (for review, see refs. 1-3). Although the physiological role of PrPC is poorly understood, studies with PrP knockout mice demonstrated that PrPC is required for the development of prion diseases. Using the yeast two-hybrid technology in Saccharomyces cerevisiae, we identified the 37-kDa laminin receptor precursor (LRP) as interacting with the cellular prion protein PrPC. Mapping analysis of the LRP-PrP interaction site in S. cerevisiae revealed that PrP and laminin share the same binding domain (amino acids 161 to 180) on LRP. The LRP-PrP interaction was confirmed in vivo in insect (Sf9) and mammalian cells (COS-7). The LRP level was increased in scrapie-infected murine N2a cells and in brain and spleen of scrapie-infected mice. In contrast, the LRP concentration was not significantly altered in these organs from mice infected with the bovine spongiform encephalopathic agent (BSE), which have a lower PrPSc accumulation. LRP levels, however, were dramatically increased in brain and pancreas, slightly increased in the spleen and not altered in the liver of crapie-infected hamsters. These data show that enhanced LRP concentrations are correlated with PrPSc accumulation in organs from mice and hamsters. The laminin receptor precursor, which is highly conserved among mammals and is located on the cell surface, may act as a receptor or co-receptor for the prion protein on mammalian cells.  相似文献   

3.
Suspension-cultured cells of Lycopersicon peruvianum respond with rapid medium alkalinization and a strong increase of a MAP kinase-like activity when treated with subnanomolar concentrations of the plant wound hormone systemin. Systemin fragments comprising the N-terminal 14 amino acids (syst1-14) or the C-terminal four amino acids (syst15-18), added singly or in combination, were inactive as inducers of these responses. Syst1-14 but not syst15-18 antagonized activity of intact systemin in a competitive manner. Likewise, intact systemin showed stimulatory, syst1-14 antagonistic activity, and syst15-18 showed no activity in leaf pieces of tomato (L. esculentum) plants assayed for the induction of ethylene biosynthesis. To study the molecular basis of perception, we extended the C-terminal end of systemin by a tyrosine residue and radioiodinated it to yield systemin-125I-iodotyrosine. In membrane preparations of L. peruvianum, this radioligand exhibited rapid, saturable, and reversible binding to a single class of binding sites. Binding showed a dissociation constant of approximately 1 nM, and binding of radioligand was efficiently competed by unlabeled systemin but not by syst15-18 or structurally unrelated peptides. Binding was also competed by the systemin antagonists syst1-14 and syst-Ala-17 (IC50 of 500 and 1000 nM, respectively). Thus, this binding site exhibits the characteristics expected for a functional systemin receptor. Based on these results, we propose a two-step mechanism for systemin action, with binding of the N-terminal part to the receptor as the first step and activation of responses with the C-terminal part as the second step.  相似文献   

4.
5.
6.
Replication protein A (RPA) is a conserved nuclear single-stranded DNA (ssDNA)-binding protein. Human RPA (hRPA) comprises three subunits of approximately 70, 32, and 14 kDa (hRPA70, hRPA32 and hRPA14). RPA is known to bind ssDNA through two ssDNA-binding domains in the RPA70 subunit. Here, we demonstrate that the complex of hRPA32 and hRPA14 has an ssDNA-binding domain. Limited proteolysis of the hRPA14.32 complex defined a core dimer composed of the central region of hRPA32 (amino acids 43-171) and RPA14. The core dimer bound ssDNA with an affinity of approximately 10-50 microM, which is at least 100-fold more avid than the DNA-binding affinity of the intact dimer. Analysis of the predicted secondary structure of hRPA32 suggests that amino acids 63-150 of hRPA32 form an ssDNA-binding domain similar in structure to each of those in hRPA70. The complex of hRPA14 and hRPA32-(43-171) in turn formed a trimeric complex with the C-terminal region of hRPA70 (amino acids 436-616). The ssDNA-binding affinity of this trimeric complex was 3 to 5-fold higher than hRPA14.32-(43-171) alone, suggesting a role for the C terminus of hRPA70 in ssDNA binding.  相似文献   

7.
STUDY OBJECTIVES: To examine the incidence and consequences of atrial arrhythmias in surgical ICU patients following major noncardiac, nonthoracic surgery. DESIGN: Prospective observational study. SETTING: University hospital surgical ICU. PATIENTS: Four hundred sixty-two consecutive patients after noncardiothoracic surgery. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Patients were assigned to one of three groups: group 1-new-onset atrial arrhythmias (n=47); group 2-history of atrial arrhythmias (n=58); and group 3-no atrial arrhythmias (n=357). New arrhythmias occurred in 10.2% of patients. Most began within the first 2 postoperative days. These patients had a higher mortality rate (23.4%), longer ICU stay (8.5+/-17.4 [SD] days), and extended hospital stay (23.3+/-23.6 days) than patients without atrial arrhythmias (mortality, 4.3%; ICU stay, 2.0+/-4.5 days; hospital stay; 13.3+/-17.7 days; p<0.02). Thirteen percent of patients had a history of atrial arrhythmias. They had a higher mortality rate (8.6%) and longer ICU stays (2.9+/-4.9 days; p<0.02) than patients without arrhythmias. Most deaths in the two arrhythmia groups were not due to cardiac problems, but to sepsis or cancer. CONCLUSIONS: Patients admitted to a surgical ICU after noncardiothoracic surgery with a history of or who developed new atrial arrhythmias had greater mortality and longer ICU stays than patients without arrhythmias. The incidence of new-onset arrhythmias was lower than reported after cardiac and thoracic surgery, but higher than in the general population. Atrial arrhythmias were not the cause of death and appear to be markers of increased mortality and morbidity.  相似文献   

8.
A region occupying approximately 24 amino acids near the N terminus of human Bcl2 is essential for this cytoplasmic membrane protein's ability to inhibit apoptosis. Systematic mutagenesis of this N-terminal region indicates that only five hydrophobic and aromatic residues within it are specifically required for function. Computerized secondary structure prediction, together with circular dichroism spectroscopy of synthetic peptides, indicates that the region encompassing these five residues has the propensity to take on an alpha-helical conformation in the presence of SDS micelles, which presumably mimic the hydrophobic surfaces of cellular membranes or polypeptides. The five critical residues are predicted to be clustered on one face of this putative helix, where they might serve to mediate protein-protein contacts involved in the multimerization of Bcl2 or in the interaction of Bcl2 with other, as yet unidentified components of the apoptotic pathway. Apparent structural homologues of this helical motif are also present in at least some other anti-apoptotic proteins from the Bcl2 family but not in those family members that tend to potentiate, rather than inhibit, apoptosis.  相似文献   

9.
The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases.  相似文献   

10.
The Fas cell surface receptor belongs to the tumor necrosis factor receptor family and can initiate apoptosis in a variety of cell types. Using the Fas cytoplasmic domain as bait in a yeast two-hybrid screening, we isolated a mouse cDNA encoding a 205-amino-acid protein. Its predicted protein sequence shows 68% identity and 80% similarity with the sequence of recently described human Mort/FADD. This protein, most likely the mouse homolog of human FADD, associates with Fas in vivo only upon the induction of cell death. A fraction of this protein is highly phosphorylated at serine/threonine residues, with both phosphorylated and unphosphorylated forms being capable of binding to FAS. Stable expression of a truncated form of the Mort/FADD protein protects cells from Fas-mediated apoptosis by interfering with the wild-type protein-Fas interaction. Thus, mouse Mort/FADD is an essential downstream component that mediates Fas-induced apoptosis.  相似文献   

11.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation.  相似文献   

12.
In situ estrogen synthesis by hormone-dependent breast cancers could potentially regulate cellular proliferation through autocrine or paracrine mechanisms. Several biochemical studies have demonstrated activity of the enzyme aromatase, the rate-limiting step for estrogen synthesis, in breast tumor homogenates. Prior immunohistochemical studies in breast neoplasms demonstrated aromatase antibody binding to both stroma and parenchyma, but biochemically measured enzyme activity significantly correlated only with the level of staining in the stromal component. The present study sought to provide more direct evidence of the predominant role for stromal cell aromatase in breast tumor tissue. Accordingly, breast tumor stromal and epithelial cells were examined for aromatase enzyme activity and messenger ribonucleic acid (mRNA) expression. Stromal and epithelial cells from benign tissue served as a means of comparing activity and regulation in benign and tumor tissue. Enzyme activity in stromal cells from breast tumor tissue was low basally, but increased by 30- to 1200-fold when induced by dexamethasone. Combining dexamethasone with phorbol esters and cAMP produced an additional 1.2- to 4.1-fold stimulation. Analyses of exons III/V and exons IX/X demonstrated that aromatase mRNA expression was also substantially increased by these treatments. Increases in enzyme activity and mRNA expression in cells from benign breast stroma paralleled those observed in tumor stroma, although the increases in enzyme activity were generally lower. In contrast to the responses observed in stromal cells, epithelial cells from breast tumor or nonmalignant breast tissue were unresponsive to dexamethasone, either added alone or in combination with phorbol esters and cAMP. This study provides direct biochemical evidence that aromatase is present in stroma within breast tumors, as in surrounding tissues, and suggests that estrogen synthesis within the tumor may modulate tumor growth via a paracrine mechanism.  相似文献   

13.
14.
Seventy-kDa heat shock cognate protein (hsc70) and its homologs in bacteria, yeast and vertebrates are known to form complexes with S-carboxymethyl-alpha-lactalbumin (CMLA), an unfolded protein; and, this activity has been attributed to its C-terminal 30-kDa domain. Herein, we show that hsc70s isolated from the seeds of mung bean and peas, however, are not effective in complexing with CMLA, and that the 30-kDa domain of Arabidopsis hsc70 (At30) cannot form stable complexes with CMLA either. Moreover, chimeric 30-kDa domains, either composed of rat 18-kDa and Arabidopsis 10-kDa subdomains (R18At10) or with Arabidopsis 18-kDa and rat 10-kDa subdomains (At18R10), were prepared and tested for their ability to complex with CMLA or a heptapeptide FYQLALT. At18R10 cannot complex with both CMLA and FYQLALT. On the other hand, R18At10 is capable of forming complexes with FYQLALT at a level similar to that of the rat 30-kDa domain (R30). R18At10 also forms complexes with CMLA, but the amount of the R18At10/CMLA complexes is much less than that of R30/CMLA. The results imply that the 18-kDa subdomain dictates the binding specificity for heptapeptide, and that the C-terminal 10-kDa subdomain may also provide some selection or restriction for unfolded proteins to form complexes with hsc70.  相似文献   

15.
The human papillomavirus (HPV) E1 and E2 proteins bind cooperatively to the viral origin of replication (ori), forming an E1-E2-ori complex that is essential for initiation of DNA replication. All other replication proteins, including DNA polymerase alpha-primase (polalpha-primase), are derived from the host cell. We have carried out a detailed analysis of the interactions of HPV type 16 (HPV-16) E1 with E2, ori, and the four polalpha-primase subunits. Deletion analysis showed that a C-terminal region of E1 (amino acids [aa] 432 to 583 or 617) is required for E2 binding. HPV-16 E1 was unable to bind the ori in the absence of E2, but the same C-terminal domain of E1 was sufficient to tether E1 to the ori via E2. Of the polalpha-primase subunits, only p68 bound E1, and binding was competitive with E2. The E1 region required (aa 397 to 583) was the same as that required for E2 binding but additionally contained 34 N-terminal residues. In confirmation of these differences, we found that a monoclonal antibody, mapping adjacent to the N-terminal junction of the p68-binding region, blocked E1-p68 but not E1-E2 binding. Sequence alignments and secondary-structure prediction for HPV-16 E1 and other superfamily 3 (SF3) viral helicases closely parallel the mapping data in suggesting that aa 439 to 623 constitute a discrete helicase domain. Assuming a common nucleoside triphosphate-binding fold, we have generated a structural model of this domain based on the X-ray structures of the hepatitis C virus and Bacillus stearothermophilus (SF2) helicases. The modelling closely matches the deletion analysis in suggesting that this region of E1 is indeed a structural domain, and our results suggest that it is multifunctional and critical to several stages of HPV DNA replication.  相似文献   

16.
17.
The authors report a clinical case of endometriosis the abdomen rectum muscle, in woman 28 years old, after a cesarean section delivery. On the basis of literature on the topic, the following are taken into consideration, the incidence, the pathogenesis, the clinical characteristics of this kind of pathology and the aspects which might facilitate the diagnostic approach and correct therapeutic to be given or follow. Parietal endometriosis is an extremely rare disease with incidence in feminine population of 0.03-1%. The pathogenesis is still ill-known. Lack of the classical symptoms and the unusual site can make diagnosis difficult. Pathognomonics but not always present are the presence of tumescence palpable of the abdominal wall near or proximity of preceding surgical scar, the cyclic character of painful symptomatology, the augmentation of volume and the bleeding in period menstrual or premenstrual. The ultrasonography, the computerized axial tomography, the nuclear magnetic resonance can facilitate the preoperative diagnosis but they do not always furnish reports of certainty. The aspirate-needle in ultrasonography control can furnish one of orientation diagnosis. The diagnosis of certainty is founded on the histologic examination after biopsy or excision. The treatment of the abdominal wall endometriosis is surgically essential. The excision of tumescence, easy usually, it is the only means to obtain the definitive recovery. The medical therapy postoperative is adjuvant in the treatment of unrecognized pelvic centres of endometriosis.  相似文献   

18.
Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine repeat in the HD protein huntingtin. Huntingtin's localization within the cell includes an association with cytoskeletal elements and vesicles. We previously identified a protein (HAP1) which binds to huntingtin in a glutamine repeat length-dependent manner. We now report that HAP1 interacts with cytoskeletal proteins, namely the p150 Glued subunit of dynactin and the pericentriolar protein PCM-1. Structural predictions indicate that both HAP1 and the interacting proteins have a high probability of forming coiled coils. We examined the interaction of HAP1 with p150 Glued . Binding of HAP1 to p150 Glued (amino acids 879-1150) was confirmed in vitro by binding of p150 Glued to a HAP1-GST fusion protein immobilized on glutathione-Sepharose beads. Also, HAP1 co-immunoprecipitated with p150 Glued from brain extracts, indicating that the interaction occurs in vivo . Like HAP1, p150 Glued is highly expressed in neurons in brain and both proteins are enriched in a nerve terminal vesicle-rich fraction. Double label immunofluorescence experiments in NGF-treated PC12 cells using confocal microscopy revealed that HAP1 and p150 Glued partially co-localize. These results suggest that HAP1 might function as an adaptor protein using coiled coils to mediate interactions among cytoskeletal, vesicular and motor proteins. Thus, HAP1 and huntingtin may play a role in vesicle trafficking within the cell and disruption of this function could contribute to the neuronal dysfunction and death seen in HD.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, the SWI-SNF complex has been proposed to antagonize the repressive effects of chromatin by disrupting nucleosomes. The SIN genes were identified as suppressors of defects in the SWI-SNF complex, and the SIN1 gene encodes an HMG1-like protein that has been proposed to be a component of chromatin. Specific mutations (sin mutations) in both histone H3 and H4 genes produce the same phenotypic effects as do mutations in the SIN1 gene. In this study, we demonstrate that Sin1 and the H3 and H4 histones interact genetically and that the C terminus of Sin1 physically associates with components of the SWI-SNF complex. In addition, we demonstrate that this interaction is blocked in the full-length Sin1 protein by the N-terminal half of the protein. Based on these and additional results, we propose that Sin1 acts as a regulatable bridge between the SWI-SNF complex and the nucleosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号