首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mixtures of Zr(OH)4 and ZrO2 particles, ∼10 nm in size, were hydrothermally treated in 0.25–1.5 mol/L H2SO4 solutions at a temperature of 200°C. After 3 h, very short ZrO2 fibers, 10–30 nm in length, were obtained, with no other zirconium compounds observed. The particles grew with treatment time and resulted in whisker particles. In a higher concentration (3 mol/L) H2SO4 solution, ZrO2 whiskers were not obtained, and clear solutions resulted with the starting ZrO2 particles remaining. It was concluded that Zr(OH)4 was useful as a starting material and that nanosized ZrO2 particles served as seed crystals for whisker formation.  相似文献   

2.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

3.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

4.
Thin films of crystalline TiO2 were deposited on self-assembled organic monolayers from aqueous TiCl4 solutions at 80°C; partially crystalline ZrO2 films were deposited on top of the TiO2 layers from Zr(SO4)2 solutions at 70°C. In the absence of a ZrO2 film, the TiO2 films had the anatase structure and underwent grain coarsening on annealing at temperatures up to 800°C; in the absence of a TiO2 film, the ZrO2 films crystallized to the tetragonal polymorph at 500°C. However, the TiO2 and ZrO2 bilayers underwent solid-state diffusive amorphization at 500°C, and ZrTiO4 crystallization could be observed only at temperatures of 550°C or higher. This result implies that metastable amorphous ZrTiO4 is energetically favorable compared to two-phase mixtures of crystalline TiO2 and ZrO2, but that crystallization of ZrTiO4 involves a high activation barrier.  相似文献   

5.
The interfaces between metal organic chemical vapor deposited PbTiO3 thin films and various diffusion barrier layers deposited on Si substrates were investigated by transmission electron microscopy. Several diffusion barrier thin films such as polycrystalline TiO2, amorphous TiO2, ZrO2, and TiN were deposited between the PbTiO3 thin film and Si substrate, because the deposition of PbTiO3 thin films on bare Si substrates produced Pb silicate layers at the interface irrespective of the deposition conditions. The TiO2 films were converted to PbTiO3 by their reaction with diffused Pb and O ions during PbTiO3 deposition at a gubstrate temperature of 410°C. Further diffusion of Pb and O induces formation of a Pb silicate layer at the interface. ZrO2 did not seem to react with Pb and O during PbTiO3 deposition at the same temperature, but the Pb and O ions that diffused through the ZrO2 layer formed a Pb silicate layer between the ZrO2 and Si substrate. The TiN films did not seem to react with Pb and O ions during the deposition of PbTiO3 at 410°C, but reacted with PbTiO3 to form a lead-deficient pyrochlore during postdeposition rapid thermal annealing at 700°C. However, TiN could effectively block the diffusion of Pb and O ions into the Si substrate and the formation of Pb silicate at the interface.  相似文献   

6.
Polymorphism in thin evaporated films of zirconium and hafnium oxides was investigated from 100° to 1500°C by electron diffraction and transmission electron microscopy. The films have metastable cubic structures at room temperature and at moderate temperatures. Zirconium oxide, depending on temperature, exists in cubic, tetragonal, and monoclinic forms, whereas hafnium oxide transforms directly from the cubic to the monoclinic structure. The transformation temperatures depend on the oxygen partial pressure. Air annealing of thin films of ZrO2 and HfO2 lowered the temperature of transformation of the tetragonal and the cubic structure into the monoclinic structure by about 150° and 100°C, respectively. The cubic/tetragonal transformation of ZrO2 is monotropic, whereas the tetragonal monoclinic transformation occurs by the typical nucleation and growth mechanism. Determination of grain size in ZrO2 at the tetragonal/monoclinic transformation temperature showed that the transformation occurs when a constant grain size of about 800 Å is reached. The oxygen partial pressure, grain size, and temperatures at which the metastable phases exist were correlated. The rate of grain growth is enhanced by increase in oxygen partial pressure. The accelerated transformation in air is attributed to rapid attainment of the critical size; grain boundary energy is an important controlling factor in transformation.  相似文献   

7.
Lead zirconate titanate (PZT) thin films were deposited by metal-organic chemical vapor deposition (MOCVD) using β-diketonate precursors and 02 at temperatures below 500°C on variously passivated Si substrates. PZT thin films could not be deposited on bare Si substrates, owing to a serious diffusion of Pb into the Si substrate during deposition. Pt/SiO2/Si substrates could partially block the diffusion of Pb, but a direct deposition of PZT thin films on the Pt/SiO2/Si substrates resulted in a very inhomogeneous deposition. A TiO2 buffer layer deposited on Pt/SiO2/Si substrates could partially suppress the diffusion of Pb and produce homogeneous thin films. However, the crystallinity of PZT thin films deposited on the TiO2-buffered Pt/SiO2/Si substrate was not good enough, and the films showed random growth direction. PZT thin films deposited on the PbTiO3-buffered Pt/SiO2/Si substrates had good crystallinity and a- and c-axis oriented growth direction. However, the PZT thin film deposited at 350°C showed fine amorphous phases at the grain boundaries, owing to the low chemical reactivities of the constituent elements at that temperature, but they could be crystallized by rapid thermal anneaiing (RTA) at 700°C. PZT thin film deposited on a 1000-å PbTiO3,-thin-film-buffered Pt/SiO2/Si substrate at 350°C and rapid thermally annealed at 700°C for 6 min showed a single-phase perovskite structure with a composition near the morphotropic boundary composition.  相似文献   

8.
Crack-free and highly transparent KTiOPO4 (KTP) thin films were synthesized by the sol-gel method using a homogeneous precursor solution prepared from ("BuO)2-P(O)(OH), Ti(OEt)4, and KOEt in EtOH. Precipitated powders from the solution crystallized directly to KTP above 550°C. Polycrystalline KTP thin films were obtained at 600°C on various substrates. On NdAlO3(100) substrates, KTP films with (101) and (240) preferred orientations were formed at 600°C. KTP films on glass substrates showed a refractive index of 1.75 and an absorption edge of 350 nm. KTP films exhibited the second harmonic generation of the 532 nm light on irradiaton with 1064 nm light.  相似文献   

9.
Zirconium diboride (ZrB2) was densified (>98% relative density) at temperatures as low as 1850°C by pressureless sintering. Sintering was activated by removing oxide impurities (B2O3 and ZrO2) from particle surfaces. Boron oxide had a high vapor pressure and was removed during heating under a mild vacuum (∼150 mTorr). Zirconia was more persistent and had to be removed by chemical reaction. Both WC and B4C were evaluated as additives to facilitate the removal of ZrO2. Reactions were proposed based on thermodynamic analysis and then confirmed by X-ray diffraction analysis of reacted powder mixtures. After the preliminary powder studies, densification was studied using either as-received ZrB2 (surface area ∼1 m2/g) or attrition-milled ZrB2 (surface area ∼7.5 m2/g) with WC and/or B4C as a sintering aid. ZrB2 containing only WC could be sintered to ∼95% relative density in 4 h at 2050°C under vacuum. In contrast, the addition of B4C allowed for sintering to >98% relative density in 1 h at 1850°C under vacuum.  相似文献   

10.
Dense, translucent ZrO2 (stabilized by Y2O3) films were made by a modified doctor blade method. Loosely coagulated ceramic powders left after decomposition of methylcellulose film were pressed onto polystyrene films to densify the powder compact. The films were heated at 1700°C in air. The thickness of the films was ∼100 μm. Very few grain boundaries appeared along the direction perpendicular to the film surface.  相似文献   

11.
The vertical section Ti-ZrO2 within the Ti-Zr-O system was investigated by metallographic, X-ray diffraction, electron probe, and melting point studies. Analyses were conducted using arcmelted specimens which had been equilibrated and quenched from temperatures of 600° to 1600°C. The Ti-ZrO2 section is similar to the Zr-ZrO2 system. At high temperatures, considerable amounts of Zr and O go into solid solution in Ti, stabilizing α-Ti to 30 wt% ZrO2. From 30 to 98 wt% ZrO2 an α-Ti+ZrO2 region is defined, and at compositions above 98 wt% ZrO2, single-phase ZrO2( ss ) exists. At low temperatures an α-Ti+(Ti,Zr)3O field exists from 22 to 32 wt% ZrO2; this region decreases in size with increasing temperature until it disappears at 1200°C. Above 32 wt% ZrO2, a three phase α-Ti+ (Ti,Zr)3O+ZrO2 field exists; its stability extends from 1200°C at 30 wt%   相似文献   

12.
Monoclinic ZrO2 was deposited on several metallic and ceramic substrates by reacting ZrCl4, CO2, and H2 at temperatures of 800° to 1050°C. Ni substrates reacted significantly in the ZrO2 coating environment since the coating was porous and contained a considerable amount of Ni. In contrast, the coating deposited on SiC and aluminoborosilicate fibers was highly crystalline, faceted, and dense without any apparent interaction with the substrate materials.  相似文献   

13.
Gas-tight Y2O3-stabilized ZrO2 (YSZ) films were prepared on NiO–YSZ and NiO–SDC (Sm0.2Ce0.8O1.9) anode substrates by a novel method. A cell, Ni–YSZ/YSZ(10 μm)/LSM–YSZ, was tested with humidified hydrogen as fuel and ambient air as oxidant. The maximum power densities of 1.64, 1.40, 1.06, and 0.60 W/cm2 were obtained at 850°, 800°, 750°, and 700°C, respectively. With methane as fuel, a cell of Ni–SDC/YSZ (12 μm)/LSM–YSZ exhibited the maximum power densities of 1.14, 0.82, 0.49, and 0.28 W/cm2 at 850°, 800°, 750°, and 700°C, respectively. The impedance results showed that the performance of the cell was controlled by the electrode polarization rather than the resistance of YSZ electrolyte film.  相似文献   

14.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

15.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

16.
Preparation of Mullite-Zirconia Composites from Glass Powder   总被引:1,自引:0,他引:1  
Glass powders with the composition mullite/5 wt% ZrO2, prepared by rapid solidification, were used to prepare a poly-crystalline ceramic by hot-pressing to 1040°C. The as-prepared structure consisted of a fine-grain-sized (∼0.1 μm) solid solution of ZrO2 in a tetragonal form of mullite. Heat treatment between 1300° and 1660°C resulted in a range of microstructures consisting of tetragonal ZrO2 particles dispersed in mullite. Transformable tetragonal ZrO2 was observed only after heat treatment at 1600°C.  相似文献   

17.
Pregrooves of 1.6 µm pitch for optical data storage have been embossed successfully by pressing a stamper against x CH3Si(OC2H5)3(100 - x )Si(OC2H5)4-derived gel films (60 ≤ x ≤ 100 mol%) on glass-disk substrates of 130 mm diameter. When x is <40 mol%, the resultant films are too hard to emboss patterns uniformly. The shrinkage of the patterns is ∼4% for all the films when 60 lessthan equal to x lessthan equal to 100 mol%, even after heat treatment at 350°C, so that the nearly net negative shape of the stamper is preserved. The methyl groups in the films decompose at temperatures from 500° to 600°C.  相似文献   

18.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

19.
Dielectric properties and structural characteristics of BaTiO3 ceramics are significantly influenced by small addition (2 wt%) of ZrO2. SEM and TEM observations revealed enhanced microstructural uniformity and retarded grain growth depending on sintering temperature. Above 1320°C, Zr diffusion into the BaTiO3 lattice resulted in a chemical modification of the tetragonal structure and the development of core–shell grains. Below 1320°C, TEM analysis showed ZrO2 at the grain boundaries as discrete particles (∼0.03μm). X-ray diffraction analysis revealed a decrease in the axial (c/a) ratio with decreasing grain size. A corresponding decrease in the spontaneous polarization, and twinned domain structures, were also observed in the fine-grained ceramics. These samples also showed a flattened permittivity response with temperature and significantly lower losses.  相似文献   

20.
Single-crystal and polycrystalline films of Mg-Al2O4 and MgFe2O4 were formed by two methods on cleavage surfaces of MgO single crystals. In one procedure, aluminum was deposited on MgO by vacuum evaporation. Subsequent heating in air at about 510°C formed a polycrystalline γ-Al2O8 film. Above 540°C, the γ-Al2O, and MgO reacted to form a single-crystal MgAl2O4 film with {001} MgAl2O4‖{001} MgO. Above 590°C, an additional layer of MgAl2O4, which is polycrystalline, formed between the γ-Al2O3 and the single-crystal spinel. Polycrystalline Mg-Al2O4 formed only when diffusion of Mg2+ ions proceeded into the polycrystalline γ-Al2O3 region. Corresponding results were obtained for Mg-Fe2O4. MgAl2O4 films were also formed on cleaved MgO single-crystal substrates by direct evaporation, using an Al2O3 crucible as a source. Very slow deposition rates were used with source temperatures of ∼1350°C and substrate temperatures of ∼800°C. Departures from single-crystal character in the films may arise through temperature gradients in the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号