首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
生物质焦对甲苯的催化裂解实验研究   总被引:2,自引:0,他引:2  
为降低生物质气化气中焦油含量,在小型固定床反应器上,进行了生物质焦对焦油模型化合物甲苯的催化裂解反应的实验研究,考察了热解焦粒径、裂解温度、气相停留时间和反应气氛对甲苯裂解率的影响.结果表明,高温条件下,热解焦对甲苯的裂解具有明显的催化作用.950℃时,所用的两种热解焦对甲苯的转化率分别达到了98%以上,同时发现,较长的气相停留时间更有利于甲苯的裂解.水蒸气或CO2能与甲苯和碳发生反应,提高甲苯的转化率,延长焦的催化活性;另外,动力学计算得出,生物质焦对甲苯催化裂解的活化能约为73 kJ/mol.  相似文献   

2.
等温热重分析法对煤焦反应动力学特性研究   总被引:1,自引:1,他引:0  
针对工业气化炉二级旋风分离器的气化后半焦,同时选取京能烟煤在1173K,1273K和1373K三个温度下快速热解焦炭作为比较,在TGA/SDTA851e型热重分析仪上,对四种经历不同热过程的焦炭进行等温热重实验,实验温度范围为773K~1023K,研究煤焦燃烧反应动力学特性及其影响因素.煤焦制取方式和热解温度的不同决定了煤焦反应性的不同,在这四种煤焦中,气化半焦JC的反应性最小,而京能烟煤三种热解煤焦的反应性随着热解温度的升高而减小.随着燃烧温度和氧含量的升高,煤焦的反应速率在增大.同时,用半转化率法确定了煤焦燃烧的转捩温度和各个反应区域的活化能,在化学反应动力区,JC,JN-1,JN-2和JN-3活化能分别为115kJ/mol,57kJ/mol,70kJ/mol和97kJ/mol,与等转化率法所求得的平均活化能相近.随着煤焦转化率的增大,反应越来越困难,活化能也在增大,而且煤焦燃烧反应离开化学反应动力区的转捩温度也在升高.  相似文献   

3.
利用同步热分析仪,采用程序升温法研究了生物质焦CO2气化反应速率特性,主要考察了升温速率对生物质焦气化反应性的影响,并用Friedman-Reich-Levi法对其动力学参数进行了计算。结果表明:DTG曲线峰值温度和最大反应速率随着升温速率的增大而增大;以二氧化碳作保护气,改变升温速率,当升温速率为15 ℃/min时,热解得到的生物质焦的反应活性最好,即气化速率最快;升温速率越大,反应速率随着温度的变化越明显;生物质焦气化阶段的活化能在-4 984.41~1 408.39 kJ/mol之间变化,气化的反应过程复杂。  相似文献   

4.
通过凝胶时间测定、差示扫描量热分析、FT-IR分析研究了乙酰丙酮镍催化含硅芳炔树脂体系的固化反应行为,并计算了反应动力学参数. 结果表明,乙酰丙酮镍对含硅芳炔树脂固化有显著的催化作用,加入0.2%(w)乙酰丙酮镍可较大幅度降低树脂固化反应的活化能和温度,初始固化温度降低约35℃,固化反应活化能为104.2 kJ/mol,比含硅芳炔树脂的固化活化能(121.2 kJ/mol)低;乙酰丙酮镍催化含硅芳炔树脂可发生Glaser偶合、Strauss偶合、环三聚、Diels-Alder和固化反应;树脂固化物保持优异的热稳定性,在氮气气氛下5%失重温度为620℃, 1000℃时残留率为87.8%.  相似文献   

5.
通过热重、元素和XRD分析,研究了新疆吉木萨尔县石长沟矿区油页岩在不同升温速率下的热解特性及热解机理. 结果表明,油页岩中有机质热解生成页岩油和热解煤气的反应主要集中在300~550℃;升温速率从3℃/min增至15℃/min,热解反应向高温区移动,有机质完全热解温度从530℃升至575℃. 油页岩有机质的热解动力学分析显示,升温速率从3℃/min增至15℃/min,直接Arrhenius法计算的有机质热解活化能从243.52 kJ/mol增至257.32 kJ/mol;反应转化率从0.02增至0.97,Friedman法计算的活化能从96.39 kJ/mol增至292.84 kJ/mol.  相似文献   

6.
在反应温度为350~410℃,反应时间为30~150min条件下,于高压反应釜内对煤焦油进行催化加氢实验,开展沥青质加氢转化动力学研究,构建沥青质、油、焦炭和气体之间四集总反应动力学模型,根据实验数据拟合一系列动力学参数。结果表明,在催化加氢反应条件下,煤焦油沥青质转化率高达62.1%,主要转变成油相。在沥青质加氢转化动力学模型中,气体、油相和焦炭生成均近似符合一级反应动力学模型。沥青质转化反应活化能较低为44.027 kJ/mol,说明催化加氢反应条件有利于沥青质加氢裂解反应。沥青质转化成油相、气体和焦炭3个平行反应中,活化能分别为76.250,64.107和55.418 kJ/mol,说明在本研究的催化加氢反应条件下,提高反应温度有利于沥青质往油相生成方向进行。  相似文献   

7.
以K2CO3为催化剂,利用自行设计的加压固定床反应器进行了神木煤焦-水蒸气催化气化反应动力学研究,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响.系统压力为3.5 MPa,气化反应温度分别为600℃,650℃和700℃,其中600℃下水蒸气分压分别为1.24 MPa,1.83 MPa和2.88 MPa;650℃和700℃下的水蒸气分压分别为1.24 MPa,1.83 MPa和2.34 MPa.研究发现,随气化温度的提高和水蒸气分压的增加,煤焦的水蒸气气化反应活性明显提高.采用n级速率方程得到煤焦与水蒸气的反应级数为0.732,活化能为102.63 kJ/mol;采用L-H方程得到活化能为109.23 kJ/mol,其速率方程可以更精确地描述反应气体压力对气化反应的影响.  相似文献   

8.
果壳生物质热解特性与动力学   总被引:1,自引:0,他引:1  
采用热重分析仪对林产果壳生物质(澳洲坚果壳、油茶壳、核桃壳)热解特性进行了研究,利用分布活化能模型(DAEM)分析了热解动力学。热解特性研究表明:油茶壳最大失重速率最小,热解起始温度、结束温度、最大失重速率温度均低于澳洲坚果壳和核桃壳;澳洲坚果壳和核桃壳热解特征值近似;3种果壳生物质随升温速率的增加,热解过程向高温区转移。DAEM研究表明:DAEM适用于3种果壳生物质的热解动力学研究,相关系数R2在0.914~0.999之间;澳洲坚果壳热解活化能83.91~211.86 kJ/mol,油茶壳热解活化能68.64~244.49 kJ/mol,核桃壳热解活化能98.69~267.75 kJ/mol;随转化率的增加,3种果壳生物质活化能呈现相同的变化趋势,但变化幅度不同。  相似文献   

9.
将1%富钙碱渣配入焦煤中制备焦炭,采用自制小型垂直固定床反应器研究了900~1200℃下所得焦炭的溶损反应过程. 结果表明,碳素溶损率小于15%时焦炭的溶损反应速率基本不变,碳素溶损率大于15%时溶损反应速率逐渐减小. 焦炭反应后的比表面积随碳素溶损率增加先增大后减小,在溶损率约为15%时最大. 配入富钙碱渣提高了焦炭的溶损反应速率,增大了焦炭的反应性,溶损温度越高,溶损速率增幅越大. 用随机孔模型描述了焦炭的溶损反应动力学过程,基础焦炭和添加1%碱渣的焦炭的溶损反应表观活化能分别为132.15和103.81 kJ/mol.  相似文献   

10.
选择有代表性的捣固焦炭,在连续热反应装置内,考察不同温度下焦炭与CO2反应行为,揭示捣固焦炭在高炉内的劣化机理.结果表明,等温条件下,不同焦炭与CO2反应至30%的水平时,转化率随时间总体呈线性规律变化,反应动力学符合零级反应特征,表观活化能为89 kJ/mol~151 kJ/mol,碳溶反应后粉化程度与焦炭显气孔率及表观活化能有关,且粉化主要以扩孔和开孔为主.  相似文献   

11.
碱金属对煤热解和气化反应速率的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
通过对原煤、酸洗原煤、负载碱金属的酸洗原煤在800~1050℃热解制得焦样,用X射线衍射技术考察了碱金属对煤焦微晶结构的影响,在加压热天平(PTGA)上考察了煤样的热解过程,以及焦样的二氧化碳气化活性。结果表明:碱金属对煤的热解和气化阶段都有影响。在热解阶段,碱金属的存在抑制了煤焦的石墨化进程,降低了热解反应活化能,促进了热解反应的进行;在气化阶段,作为催化剂的碱金属,降低了气化反应活化能,延长了反应速率达到最大值的时间。修正的随机孔模型可以较好地描述煤焦-CO2的气化反应过程。  相似文献   

12.
肖瑞瑞  杨伟  于广锁 《化工进展》2013,32(2):460-465
采用恒温热重分析法对稻草的催化气化反应动力学进行了研究,同时研究了生物质对石油焦气化的催化作用。采用修正随机孔模型对气化反应转化速率与转化率的关系进行了拟合计算,得到生物质焦气化的活化能和指前因子。结果表明,加入催化剂后半焦的气化反应活性增大,活性顺序为:加入K+半焦> 加入Ca2+半焦> 加入Mg2+半焦> 原半焦> 酸洗后半焦,表明了生物质焦能明显提高石油焦的气化活性。不同半焦气化的活化能大小顺序为:加入K+半焦<加入Ca2+半焦<加入Mg2+半焦<原半焦<酸洗后半焦,表明了生物质半焦的加入能降低石油焦气化的活化能。  相似文献   

13.
Tie-feng Liu  Yi-tian Fang  Yang Wang 《Fuel》2008,87(4-5):460-466
The gasification activities of three kinds of Binxian chars with carbon dioxide were studied at 1000–1300 °C and under atmospheric pressure in self-made thermal balance. The specific surface area of coal or chars was determined with BET methods during gasification. The results showed that the reaction rate of two rapid pyrolysis chars increases at the beginning and decreases subsequently with increasing carbon conversion at relatively high temperatures. The heating rate of coal has a significant effect on the gasification process. The activation energy of slow pyrolysis char varies between 160 kJ/mol and 180 kJ/mol during gasification. The activation energy of the two rapid pyrolysis chars displays a linear trend when the carbon conversion is less than 40% and decreases slowly afterwards.  相似文献   

14.
《Fuel》2002,81(4):423-429
A kinetic study on the gasification of carbonised grapefruit (Citrus Aurantium) skin with CO2 and with steam is presented. The chars from this agricultural waste show a comparatively high reactivity, which can be mostly attributed to the catalytic effect of the inorganic matter. The ash content of the carbonised substrate used in this work falls around 15% (db) potassium being the main metallic constituent. The reactivity for both, CO2 and steam gasification, increases at increasing conversion and also does the reactivity per unit surface area, consistently with the aforementioned catalytic effect. Lowering the ash content of the char by acid washing leads to a decrease of reactivity thus confirming the catalytic activity of the inorganic matter present in the starting material. Saturation of this catalytic effect was not detected within the conversion range investigated covering in most cases up to 0.85-0.9. Apparent activation energy values within the range of 200-250 kJ/mol have been obtained for CO2 gasification whereas the values obtained for steam gasification fall mostly between 130 and 170 kJ/mol. These values become comparable with the reported in the literature for other carbonaceous raw materials including chars from biomass residues and coals under chemical control conditions.  相似文献   

15.
D. vamvuka  E. Karouki  S. Sfakiotakis 《Fuel》2011,90(3):1120-1127
A series of carbon dioxide gasification tests of waste biomass chars were performed in a thermogravimetric analysis system, at non-isothermal heating conditions. The effects of the inorganic constituents of the fuels on thermal conversion characteristics were examined. Reaction rates were determined by developing a power law model.The bulk of char gasification process occurred between 800 and 950 °C. Maximum reaction rate and conversion were exhibited by waste paper char, due to its higher surface area.Inherent alkaline and alkaline earth carbonates and sulphates acted as catalysts, by increasing the reactivity of the fuels in carbon dioxide and causing their degradation to start at lower temperatures (60-75 °C).The kinetic model fitted the experimental results accurately. Activation energy values and reaction order ranged from 180 to 370 kJ/mol and 0.4 to 0.6, respectively, among the chars, indicating a chemically controlled process.  相似文献   

16.
Two coal chars were gasified with carbon dioxide or steam using a Pressurized Drop Tube Furnace (PDTF) at high temperature and pressurized conditions to simulate the inside of an air-blown two-stage entrained flow coal gasifier. Chars were produced by rapid pyrolysis of pulverized coals using a DTF in a nitrogen gas flow at 1400°C. Gasification temperatures were from 1100 to 1500°C and pressures were from 0.2 to 2 MPa. As a result, the surface area of the gasified char increased rapidly with the progress of gasification up to about six times the size of initial surface area and peaked at about 40% of char gasification. These changes of surface area and reaction rate could be described with a random pore model and a gasification reaction rate equation was derived. Reaction order was 0.73 for gasification of the coal char with carbon dioxide and 0.86 for that with steam. Activation energy was 163 kJ/mol for gasification with carbon dioxide and 214 kJ/mol for that with steam. At high temperature as the reaction rate with carbon dioxide is about 0.03 s−1, the reaction rate of the coal char was controlled by pore diffusion, while that of another coal char was controlled by surface reaction where reaction order was 0.49 and activation energy was 261 kJ/mol.  相似文献   

17.
煤拔头半焦燃烧特性   总被引:3,自引:0,他引:3  
利用喷动载流床模拟煤拔头工艺,在550, 650, 750和850℃温度下对大同烟煤进行热解得到拔头半焦,采用非等温热分析方法对原煤及拔头半焦的燃烧特性进行了研究. 由热分析实验数据归纳提出了表征煤和半焦着火、燃烧及燃烬性能的无量纲综合燃烧指数Z. Z值越大,煤样综合燃烧性能越佳. 结果显示,大同烟煤在2℃/min升温速率下Z值为0.41;4个热解温度(由低到高)下所得拔头半焦的Z值分别为0.39, 0.35, 0.31, 0.21,且拔头半焦的燃烧性能均低于原煤,但高于阳泉无烟煤,且随热解温度升高Z值降低,燃烧反应性降低. Z值与着火温度及表观燃烧活化能表现出的反应性一致.  相似文献   

18.
CO2 gasification kinetics of chars from two Alberta coals (Obed Mountain, high volatile bituminous and Highvale, subbituminous) have been studied using a thermogravimetric analyzer (TGA) and a fixed bed reactor. Charification and gasification reactions were performed sequentially in both the TGA instrument and in the fixed bed reactor to simulate real gasifier operating conditions. TGA and fixed bed data were processed numerically to evaluate the kinetic rate of CO2 gasification of the chars. Calculated gasification kinetics could be correlated using both the volume reaction and the grain models. Activation energies of the kinetic rate constants were near 200 kJ/mol for both Highvale and Obed Mountain coal chars using the TGA data. The activation energies calculated for the Obed Mountain coal char using the fixed bed reactor were about 250 kJ/mol. For all the cases studied the calculated activation energies were nearly the same for both the volume and grain reaction models.  相似文献   

19.
利用加压热分析仪,测定了义马煤焦的CO2气化反应性。结果表明:随温度的提高,义马煤焦的反应性和反应速度呈增加趋势,与前期研究常压下的情况一致;压力对气化反应的促进作用不明显,且温度对气化过程的影响大于压力;反应速率在初始阶段最大,随后逐渐减小。经过动力学计算表明:反应速率与温度的关系符合Arrhen ius定律;反应级数随温度增加而减小,近似于线性关系;煤焦活化能大约为60.02 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号