首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
龚哲彦 《现代矿业》2020,36(9):110-113
针对某地磁铁矿石含硫(339%)较高,磁选容易造成铁精矿含硫超标的问题,进行降硫选铁及综合回收伴生有价组分的选矿试验研究,最终推荐浮选—磁选联合工艺流程,获得了铜品位1330%、金品位425 g/t、银品位107 g/t,铜回收率5125%的合格铜精矿;硫品位2960%、硫回收率7974%的合格硫精矿;全铁品位6705%、硫含量016%、全铁回收率6200%的合格铁精矿;该工艺流程合理,浮选除硫可有效地降低铁精矿中的硫含量,并且综合回收了铜和硫,提高了该矿山的经济价值。  相似文献   

2.
研究了某铜铁矿矿石性质,进行了铜矿物粗选、扫选、精选条件及铁矿综合回收试验研究。结果表明:采用铜硫混合浮选、三次精选、四次扫选,铜硫分离一次粗选、三次精选、一次扫选工艺,可以获得铜精矿铜品位16.93%,回收率69.81%;硫精矿硫品位32.80%,回收率53.23%的选矿产品。浮选尾矿进行再磨除硫,获得的铁精矿品位67.49%,全铁回收率61.12%。  相似文献   

3.
某铜硫矿选矿工艺研究   总被引:3,自引:0,他引:3  
对某铜硫矿进行了详细的浮选工艺研究,对浮选尾矿中的磁铁矿进行了磁选回收,确定了最佳的工艺流程。闭路试验获得了铜品位24.16%、铜回收率92.04%的铜精矿和硫品位40.24%、硫回收率89.72%的硫精矿,以及铁品位65.15%、对原矿全铁回收率35.66%(对原矿磁铁矿回收率约93%)的铁精矿。  相似文献   

4.
对澳大利亚某铜尾矿进行了选矿试验研究,采用浮选—磁选联合工艺流程,综合回收尾矿中的硫、铁元素。试验结果表明:采用新型XT-01作为硫铁矿捕收剂,可获得硫品位为49.80%、回收率为92.58%的硫精矿;浮硫尾矿采用湿式弱磁选机磁选,获得了铁品位为64.11%、全铁回收率为45.91%的铁精矿,实现了铜尾矿中硫、铁的综合回收。   相似文献   

5.
为从铜山深部矿石含铜硫化矿中分选铜,在系统的工艺矿物学研究和选矿工艺研究的基础上,确定采用铜硫混浮—铜硫分离—中矿再磨再选—尾矿磁选选铁工艺流程,最终获得了铜品位为15.50%、含硫34.17%、含铁33.16%、铜回收率为86.90%的铜精矿,硫品位为41.27%、含铜0.236%、含铁39.63%、硫回收率为74.68%的硫精矿;铁品位为63.22%、含铜0.042%、含硫0.60%、铁回收率为38.48%的铁精矿。  相似文献   

6.
陕西某铜金铁多金属矿矿石成分主要为黄铁矿、磁铁矿和黄铜矿,金主要赋存在硫化矿中。为综合利用该矿石,采用原矿经磨矿—抑硫浮铜—选硫—选铁,并将金富集在黄铜矿中的优先浮选工艺流程进行选矿试验研究。结果表明,采用该流程可较好实现该多金属矿的综合回收,选矿指标良好,其中铜精矿指标为铜品位20. 29%、铜回收率95. 62%、金品位36. 71 g/t,金回收率81. 90%;硫精矿指标为硫品位42. 67%,硫回收率56. 63%;铁精矿指标为全铁品位62. 51%,全铁回收率15. 10%。  相似文献   

7.
对河南某铁、硫、铜多金属矿进行了选矿试验研究。根据该矿石的工艺矿物学特性,采用铜、硫优先浮选—浮选尾矿弱磁选的联合工艺,综合回收矿石中的铁、硫、铜。获得的铁精矿品位65.50%、回收率43.04%,硫精矿品位42.50%、回收率90.63%,铜精矿品位17.50%、回收率54.80%,并且铁精矿含铜和含硫分别为0.15%和0.25%,达到国家铁精矿粉矿二级品的质量标准。  相似文献   

8.
为有效利用南钢某矿业公司某尾矿中含有的铜、硫、铁等有价元素,对尾矿进行了浮选回收试验,获得了铜品位为10.31%,回收率为46.44%的铜精矿;硫品位为37.46%,回收率为75.43%的硫精矿;铁品位为65.72%,回收率为13.28%的铁精矿,取得了铁、铜、硫综合回收利用的较好指标。  相似文献   

9.
河南某多金属铁矿石选矿试验研究   总被引:3,自引:2,他引:1  
河南某铁矿矿石中除磁铁矿外,还伴生有铜、硫矿物,其中硫矿物有相当一部分为磁黄铁矿。为了给该矿的矿床工业评价及矿石可选性评估提供依据,对该矿矿石进行了选矿试验研究。试验结果表明:采用铜、硫依次浮选-浮选尾矿弱磁选联合工艺流程,可以综合回收矿石中的铜、硫、铁。获得的铁精矿铁品位为65.10%,回收率为57.23%,硫精矿硫品位为42.00%,回收率为95.62%,铜精矿铜品位为19.20%,回收率为52.79%,并且铁精矿含铜和含硫分别为0.03%和0.25%,达到国家铁精矿粉矿二级品的含杂标准。  相似文献   

10.
高起方 《矿冶》2020,29(1):32-36
某高铁铜硫多金属矿铁品位45.80%、铜品位0.48%、硫品位2.3%、金品位0.24g/t,有用矿物相互嵌布影响分选效果。采用"铜硫混合浮选—浮选尾矿磁选回收铁—铜硫分离"的联合工艺流程处理该矿石,并采用Mos-2+MA-1组合捕收剂捕收、铜硫粗精矿再磨及强化扫选等手段,可获得铜品位20.14%、金品位8.73g/t、铜回收率88.53%、金回收率76.75%的铜精矿;硫品位41.56%、硫回收率77.70%的硫精矿;铁品位67.83%、铁回收率90.24%的铁精矿,实现了矿石中铁、铜、硫、金的高效回收。  相似文献   

11.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

12.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

13.
秘鲁某选铁尾矿中铜品位0.83%,铁品位24.04%,同时伴生一定的金、银,具有较高的综合回收价值.由于该尾矿的脱硫泡沫中的硫被活化,受铜矿物中次生铜离子对硫的活化作用以及海水中各种离子对铜浮选的干扰,使得选铁尾矿的回收具有一定的难度.针对上述问题,在矿石工艺矿物学研究的基础上,通过工艺流程探索,采用优先选铜-粗精矿再...  相似文献   

14.
孙放 《金属矿山》2012,41(10):70-74
某铁矿矿石中铁矿物以磁铁矿为主,并伴生有少量可供综合回收的黄铜矿和黄铁矿。为了给该矿山的开发建设提供可行性研究和设计依据,进行了-75 mm干式磁选抛尾-先浮后磁或先磁后浮阶段磨选、原矿直接先浮后磁或先磁后浮阶段磨选共4种流程的选矿试验研究。根据试验结果,经分析比较,推荐采用-75 mm干式磁选抛尾-先磁后浮阶段磨选流程。该流程可预先抛弃产率达21.0.4%的废石,最终获得铁品位为66.10%、铁回收率为83.48%、硫含量为0.26%的铁精矿,铜品位为15.04%、铜回收率为63.27%的铜精矿以及硫品位为45.51%、硫回收率为72.89%的硫精矿  相似文献   

15.
四川某铜多金属矿石中除铜外,还伴生有钼、硫钴和铁。为了合理有效地利用该矿石,对其进行了选矿工艺研究。结果表明,采用铜钼混合浮选-铜钼分离浮选-混浮尾矿浮硫钴-浮选尾矿弱磁选回收铁的工艺流程,可在高效回收铜的同时较好地实现钼、硫钴和铁的综合回收,所获铜精矿铜品位为21.25%、铜回收率为93.38%,钼精矿钼品位为45.78%、钼回收率为45.72%,硫钴精矿硫品位为44.69%、钴品位为0.46%、硫回收率为41.53%、钴回收率为46.42%,铁精矿铁品位为63.73%、铁回收率38.29%。  相似文献   

16.
易运来 《现代矿业》2018,34(9):16-19
为高效回收利用铜品位为1.28%的云南某氧化铜矿,根据原矿高氧化率、高结合率、嵌布粒度细的特点及不同含铜矿物可浮性和磁性的差异,试验研究采用先浮硫化铜后浮氧化铜-浮选尾矿强磁选的原则工艺流程。试验结果表明:在磨矿细度为-0.074 mm 84.5%的条件下,进行硫化铜1粗1扫2精浮硫化铜矿,硫化铜浮选尾矿再进行1粗3扫3精浮氧化铜矿,浮选尾矿通过磁选综合回收铜工艺,最终获得的硫化铜精矿铜品位为24.75%,铜回收率为33.03%;获得的氧化铜精矿铜品位为16.12%,回收率为39.25%;获得的磁选精矿铜品位为9.71%,铜回收率为12.50%;总精矿铜品位为16.77%,总铜回收率为84.78%,获得了满意的试验指标。   相似文献   

17.
王家滩菱铁矿的选矿试验研究   总被引:3,自引:0,他引:3  
根据王家滩菱铁矿的性质,在大量试验研究的基础上,确定出浮选铜硫-焙烧-磁选的工艺流程,可获得品位57.23%、回收率62.94%、含硫0.18%的铁精矿;品位16.08%、回收率82.92%的铜精矿,最大限度地利用了铜和硫资源.  相似文献   

18.
韩聪  魏德洲  刘文刚 《金属矿山》2016,45(1):97-100
为开发利用某多金属矿山选矿厂重选中矿中的铜铋硫铁等有价元素,对参照现场选矿工艺制备出的重选中矿试样进行了选矿试验。结果表明:试样经过铜、铋、硫混浮,混浮精矿摇床重选选铋,选铋尾矿抑硫浮铜,混浮尾矿弱磁选选铁流程处理,获得了铋品位为41.59%、回收率为29.13%的铋精矿,铜品位为21.03%、回收率为66.31%的铜精矿,硫品位为42.87%、回收率为90.25%的硫精矿,以及铁品位为68.06%、回收率为21.11%的铁精矿。各精矿产品指标较好,因此,铜铋硫混浮-摇床重选选铋-抑硫浮铜铜硫分离-弱磁选选铁工艺是该中矿高效开发利用的合理工艺。  相似文献   

19.
以云南某铜金多金属矿为研究对象,探索了金在与其伴生的硫化矿、磁铁矿混合体系中的选矿特性及载体矿物对其选矿指标的影响。依据金在该矿石中的赋存状态、嵌布特征及其载体矿物的多样性等特点,采用了优先选铜再选硫,然后磁选铁矿物的工艺流程。通过精细化调控工艺参数,在最佳的综合条件下,获得的铜精矿铜品位为18.63%、含金63.24g/t,铜回收率为88.67%,金在铜精矿中的分布率为67.06%;硫精矿硫品位为47.86%、含金2.41g/t,硫回收率为86.16%,金在硫精矿中的分布率为15.08%;铁精矿铁品位为59.55%、含金1.20g/t,铁回收率为38.22%,金在铁精矿中的分布率为10.51%,为技术经济指标的提升和工艺改进提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号