首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microwave drying is usually combined with vacuum environment in conjunction with hot air flow to draw the moisture rapidly. The moisture content of the vegetables undergoing drying is hard to measure online. This research designed a microwave vacuum drying (MVD)-low-field nuclear magnetic resonance (NMR) smart device and investigated the feasibility of NMR method for online measurement of state of moisture during MVD. The relation between the signal amplitude (A 2) and the true moisture content (M 1) of six kinds of vegetables (mushroom, carrot, potato, lotus, edamame, vegetable corn) was fitted to estimate if NMR can measure the M 1 of vegetables directly. Results showed that A 2 and M 1 of different fresh vegetables had no single empirical mathematical model to fit. However, for each kind of these vegetables, the A 2 and corresponding M 1 in different MVD stages showed a significant linear relationship. The predicted moisture content (M 2) of mushroom: M 2 = 5.25351 × 10?4 A 2 ? 0.34042, R = 0.996; carrot: M 2 = 5.78756 × 10?4 A 2 ? 0.14108, R = 0.998; potato: M 2 = 3.10019 × 10?4 A 2 ? 0.10612, R = 0.991; lotus: M 2 = 2.32415 × 10?4 A 2 ? 0.01573, R = 0.998; edamame: M 2 = 3.13310 × 10?4 A 2 ? 0.4198, R = 0.996; vegetable corn: M 2 = 1.69461 × 10?4 A 2 ? 0.09063, R = 0.995. The linear models between M 2 and A 2 were able to estimate the end point (M 1 < 8%) of MVD with a high accuracy (P > 0.950).  相似文献   

2.
A modified diffusion-based mathematical model is proposed to describe the moisture movement during continuous and intermittent drying of Eucalyptus saligna. This model includes the temperature change, the surface drying coefficient (β n ) and 2 diffusion coefficients [from green to FSP (D f ) and from FSP to dry condition (D o )] as important parameters. The final model expression obtained was M?=?exp (??25 β n 2 D t /l2) with the β n used was 1.5807 kg m?2 s?1, the D f was 2.26?×?10?11 m2 s?1, and the D o was 5.85?×?10?12 m2 s?1. The range of temperature change between heating and non-heating phases in the intermittent drying regimes was from 24.9 to 31.8 °C. The R2 values obtained when the model was fitted into the drying data of different intermittent regimes ranged from 71.5 to 85.9%. The R2 value was 87.4% when the model was fitted into continuous trial data. The high values of R2 indicate that the model can be used to understand the moisture reduction both in intermittent and continuous regimes.  相似文献   

3.
The purpose of this study was to investigate the inhibitory effect of essential oils (thyme, clove and cinnamon) in vapour phase against the major fungal diseases of mango in vitro and in vivo. Thyme oil vapour (5 μL/Petri plate) completely inhibited the mycelial growth of Colletotrichum gloeosporioides and Lasiodiplodia theobromae under in vitro condition. Thyme oil vapour at 66.7 μL L?1 significantly reduced artificially inoculated C. gloeosporioides and L. theobromae in mangoes for 4 days. GC/MS analysis revealed thymol, eugenol and benzofuran, 3-methyl as the dominant compounds in thyme, clove and cinnamon oils, respectively. The activities of defence and antioxidant enzymes including peroxidase, chitinase, phenylalanine ammonia-lyase, β-1,3-glucanase, catalase and superoxide dismutase were enhanced by thyme oil (66.7 μL L?1) treatment and also help to maintain the phenolic content. Hence, postharvest thyme oil vapour treatment may prove to be an alternative means of controlling disease in mangoes.  相似文献   

4.
The effects of high-pressure processing (HPP 300 MPa/15 min, 400 MPa/5 min, 500 MPa/2.5 min, and 600 MPa/1 min) and high-temperature/short-time processing (HTST 110 °C/8.6 s), with or without blanching, on mango pulp were comparatively evaluated in terms of the antioxidant compounds, antioxidant capacity, sugars, and color. Blanching treatment significantly increased the total phenol content and the antioxidant capacity of mango pulp, but did not change the levels of L-ascorbic acid, carotenoids, sugars, and visual color (total color difference, △E?<?2.00). Both HPP and HTST treatments significantly increased the total phenol content and antioxidant capacity of un-blanched mango pulp, but no significant changes occurred in the blanched mango pulp. HPP did not affect the levels of L-ascorbic acid, carotenoids, and sugars in mango pulp regardless of blanching. However, HTST significantly decreased the fructose and glucose levels, as well as induced the isomerization of β-carotene, with the increase in 13-cis-β-carotene accompanied by the decrease in all-trans-β-carotene. Moreover, HPP-treated mango pulp consistently showed lower △E values than those HTST-treated samples, regardless of blanching.  相似文献   

5.
Potatoes are an important food in many regions of the world and are commonly used in a variety of food products. Thermal transition and thermo-physical properties of potatoes are important in order to design efficient food processes and select appropriate storage conditions. In this study, we determined the thermal transitions and thermophysical properties of raw and blanched/par-fried potato for a temperature range of ??32 to 21.1 °C. Using differential scanning calorimetry, we found an initial freezing point (Tf) at ??1.8?±?0.1 °C, an onset of melting (Tm) at ??9.9?±?0.2 °C and an unfreezable water content (Xw) for maximally freeze-concentrated raw potato at 0.21 kg water/kg potato. Corresponding values for blanched/par-fried potatoes were ??0.9?±?0.1 °C, ??11.0?±?0.2 °C and 0.18 kg water/kg potato. Results show that an increase in solids content decreased Tf of both raw and blanched potatoes. We modelled the relationship between them using the Chen model. The apparent specific heat (Capp) increased around Tf to 31.7?±?1.13 kJ/kg K for raw potato and 26.7?±?0.62 kJ/kg K for blanched/par-fried potato. For frozen raw potato at ??32 °C, thermal diffusivity (α) was 0.89?±?0.01?×?10??6 m2/s and thermal conductivity (k), 1.82?±?0.14 W/m K, respectively. These values were higher for frozen raw potato than for the unfrozen raw potato (0.15?±?0.01?×?10??6 m2/s and 0.56?±?0.08 W/m K, respectively at 21.1 °C). The apparent density (ρ) of frozen raw potato (992?±?4.00 kg/m3 at ??32 °C) was less than that for unfrozen raw potato (1053?±?4.00 kg/m3 at 21.1 °C), and a similar trend was obtained for blanched/par-fried potato (993?±?2.00 kg/m3 at ??32 °C and 1188?±?7.00 kg/m3 at 21.1 °C, respectively). This study established a correlation between thermo-physical properties and temperature. Findings may be used to inform the design and optimization of freezing processes and frozen storage for potato products.  相似文献   

6.
In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x 1), L/D ratio (x 2), barrel temperature (°C; x 3), and feed mix moisture content (%; x 4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed?>?80 rpm, L/D ratio?>?12, barrel temperature?>?80 °C, and feed mix moisture content?>?20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19?×?10?7 m3/s (x 1?=?139.08 rpm, x 2?=?15.90, x 3?=?99.56 °C, and x 4?=?59.72%) and 0.53?×?10?7 m3/s (x 1?=?59.65 rpm, x 2?=?11.93, x 3?=?68.98 °C, and x 4?=?20.04%).  相似文献   

7.
The change in the moisture content of soybeans during a rehydration process at 25 °C was investigated. Peleg’s equation was suitable for describing the soaking characteristics of the soybean with a R2 value of 0.98. The soaking time to achieve the target moisture content of soybeans (33.33%) was estimated to be 14.59 min by the Peleg model. The mass transfer coefficient (k) for the mass transfer simulation was determined with two calculation steps using the Omoto model and the simulation models. The most suitable k value for the simulation was determined to be 6.0?×?10?7 m2/s, which is higher than the apparent k value obtained from the Omoto model. The diffusion simulation for the internal diffusion of the soybean after soaking was conducted for 180 min and the cross-section of soybeans was analyzed using an image processing technique during the diffusion process. The image analysis detected a moving layer during the diffusion process and the moisture content at the layer was determined to be 32.08% (±?0.34) based on the results of the simulation model.  相似文献   

8.
Biodegradable films of chia by-products (mucilage and protein-rich fraction (PF)) incorporated with clove essential oil (CEO) were obtained and characterized. The effects of polymer concentration (PC; 1.0–3.0 %, w/v) and CEO concentration (0.1–1.0 %, v/v) were evaluated as well as the pH (7–10), using a 23 factorial design with four central points. The films exhibited moisture values between 11.6 and 52.1 % (d.b.), which decreased (p?<?0.05) with increasing PC and CEO. The thickness of the films increased (p?<?0.05) with increasing PC. PC and pH influenced (p?<?0.05) the lightness (L) and variation in color between red and green (a). The orientation of the color to yellow-blue hues (b) decreased significantly (p?<?0.05) with increasing PC. Transparency was significantly lower and higher (p?<?0.05) than PC and CEO, respectively. The film surface morphology was evaluated using atomic force miscrocope images, and thermogravimetric analysis (TGA) was performed to study the thermal stability of the films. The displacement and tensile strength were significantly lower (p?<?0.05) at higher concentrations of CEO, this variable being the only one with a significant effect. The chemical composition of the films was confirmed utilizing Fourier transform infrared (FTIR) spectroscopy. The proportion of CEO added to the films had a significant influence on antimicrobial activity, inhibiting the growth of both Escherichia coli and Staphylococcus aureus.  相似文献   

9.
The effectiveness of pulsed light (PL) treatments to inhibit microorganisms on fresh-cut tomatoes (Lycopersicon esculentum Mill., cv. Daniela) was investigated. Tomato slices inoculated with Escherichia coli or Listeria innocua were exposed to PL treatments (4, 6, or 8 J cm?2 fluence) and kept cold at 4 °C for 20 days. L. innocua and E. coli counts, gases in the headspace of the containers (O2 and CO2), pH, titratable acidity, and soluble solid content were monitored throughout the cold storage. The PL treatments reduced significantly (p < 0.05) initial loads of both microbes. The effect of the PL fluence on the survival number of microoganisms was described by a log-linear model (R 2 = 0.849–0.999). At any fixed time within the cold storing, the microbial counts for untreated samples were always higher than those cut tomatoes that had been previously PL-treated. The behavior of L. innocua and E. coli during the storage were well adjusted (R 2 > 0.930) by Gompertzian models; the studied microorganisms exhibited different patterns during the storage period. On the other hand, O2 and CO2 partial pressures in containers with fresh-cut tomatoes were also significantly affected by PL treatments (p < 0.05). The highest PL fluence caused the greatest changes of O2 and CO2 contents. In addition, the application of PL triggered an acceleration of the O2 consumption during the cold stage. PL treatments might be used to effectively extend the safety of fresh-cut tomatoes over 12 days of storage against E. coli and L. innocua growth.  相似文献   

10.
Fruits have been the focus of several studies aimed at finding new antioxidant sources for protection against the damage caused by reactive species. In this study, the antioxidant activity and the presence of phenolic compounds in all parts (peel, pulp, and seeds) of Eugenia involucrata DC. fruits were evaluated. DPPH·, ABTS·+, and ORAC methods were used to determine the antioxidant activity, and an UHPLC-MS/MS method was developed for determining the phenolic compounds (gallic, chlorogenic, ferulic, p-coumaric and ellagic acids, quercetin, and myricetin). In the determination of both antioxidant activity and phenolic composition, the efficiency of solvents with different polarities—methanol/H2O (80:20, v/v), ethanol/H2O (80:20, v/v), methanol/acidified water with phosphoric acid pH 3.00 (80:20, v/v), and ethyl acetate—for the extraction of the phenolic compounds, was also evaluated. All parts of E. involucrata fruits showed antioxidant activity, in the range of 36.68 ± 1.44 to 873.87 ± 18.24 μmol TE g?1, being the highest values found in the seeds and peel when more polar extraction solvents were used. Six, five, and three phenolic compounds were identified and quantified in the pulp, peel, and seeds, respectively, with the highest abundance as p-coumaric acid (14 ± 2 mg kg?1) in the pulp, quercetin (47 ± 5 mg kg?1) in the peel, and gallic acid (74 ± 4 mg kg?1) in the seeds, also when more polar solvents were used. Although antioxidant activity methods suggested that the peel and seeds have more antioxidant potential, a wider variety of compounds were determined in the pulp.  相似文献   

11.
Bael (Aegle marmelos) is considered as a holy fruit comprised of vast number of phytonutrients. Whole bael tree including all its parts has medicinal significance. Lack of awareness and seasonal nature makes its processing rather challenging. Conventional heat processing may lead to inactivation of quality hampering enzymes such as peroxidase, but at the cost of loss in essential phytonutrients. In the present work it was observed that thermal inactivation of bael peroxidase obeyed first order kinetics with enzyme activation energy of 7.7 kJ mol?1. Complete inactivation of bael peroxidase was achieved within 11 min at 85?°C while ultrasound treatment attained in lesser time of 4 min at 64.07 W cm?2 ultrasonic intensity. Loss of marmelosin a well-known phytonutrient in bael fruit was found to be 83.29?% by heat (11 min, 85?°C) and only 50.20?% by ultrasonication (4 min, 64.07 W cm?2 ultrasonic intensity). Ultrasonication has potential to overcome harmful effects of heat processing with retention of phyto-constituents and hence has promising future in various food processing applications.  相似文献   

12.
Structural and rheological characterization of reconstituted hydrogels developed from A. vera non-fibrous alcohol insoluble residue (NFAIR) powder using different methods [viz., shaking (S), heating-shaking (HS), and heating (H)] and concentrations (viz., 0.2–1.6 %, w/v) was carried out. Functional group distribution by FTIR spectroscopy and Congo red (CR) method revealed the presence of acetylated acemannan in A. vera powder. Dynamic oscillation studies of A. vera (NFAIR) fluids at all concentrations of 0.2–1.6 %, w/v, showed gel strength in the order of H > HS > S method. However, in H method, increase in concentration from 0.2 to 1.6 %, w/v showed the conformational transition from semi-diluted solution to weak gel nature. Rheological models described the effect of heating temperatures (HT); 30–90 °C, and times (Ht); 15–60 min on viscoelastic behavior in reconstituted A. vera fluids. The reconstituted A. vera hydrogel prepared with a concentration of 1.6 %, w/v using 50 °C (HT) and 30 min (Ht) condition showed a good agreement with the Power law (storage modulus, G′) and Weak gel model (complex modulus, G*) fitted data (R2 > 0.94) resulting higher viscoelastic moduli intercepts; G0 (71.5 Pa s n), G0 (33.5 Pa s n), lower slopes; n′ (0.22), n″ (0.06), higher network strength (A F , 121.3 Pa s1/z ) and number of network (z, 5.3) values. The obtained results suggested that heating at 50 °C/30 min can develop aqueous weak gel networks of A. vera with enhanced gel strength which may be utilized as a novel gelling agent for wide variety of targeted applications in food and pharmaceutical sectors.  相似文献   

13.
Little is known about anticancer capability of wild-growing mushrooms belonging to Agaricus spp. in comparison with their cultivated counterparts. The present study was done to evaluate in vitro antiproliferative effects of dichloromethane-methanol (1:1, v/v) extracts obtained from several Iranian wild strains of Agaricus spp. in comparison with the cultivated white button mushroom, A. bisporus. The wild brown A. bisporus at 500 µg/mL moderately prevented the growth of human prostate cancer (PC3) and human breast cancer (MCF-7) cell lines by 23.54 and 24.57%, respectively, while the wild strains of A. devniensis and A. gennadii at 500 µg/mL had only marginal inhibitory effects. On the contrary, the cultivated A. bisporus significantly inhibited the cell growth at concentrations as low as 125 µg/mL (p?<?0.05). Further, seven distinct fractions were determined based on thin layer chromatography analysis of the cultivated A. bisporus extract. The only active fraction was found to be eluted by petroleum ether (PE):ethyl acetate (EtOAc) (3:2 v/v) which prevented the growth of MCF-7 and PC3 by 74.00 and 63.5%, respectively at 500 µg/mL. Besides, the fraction imposed obvious cytopathic effects in both cell lines at all the tested concentrations, starting from 125 µg/mL. The findings of this study may validate that the known antioxidant potency of wild Agaricus spp. would not necessarily be correlated to their anticancer activity. This research further validated that some semi-polar antiproliferative compounds could be present in the PE/EtOAc-fraction of the cultivated white button mushroom, which warrants further investigations.  相似文献   

14.
The inactivation and photoreactivation response of six seafood-isolated Listeria monocytogenes and one Listeria innocua strain after pulsed light (PL) treatment was evaluated. The lower inactivation levels found after exposure of treated samples to daylight during the first 90 min of storage confirmed that both L. innocua and L. monocytogenes have the capability to photorepair PL-induced DNA damage upon appropriate conditions. Photoreactivation levels from 0.2 to 2.1 log CFU cm?2 were observed depending on treatment intensity (fluence) and Listeria strain. Complete photorepair of PL-caused damage was not found even after treatments inducing low inactivation levels. Photoreactivation increased up to 2.1 log with the applied fluence up to a threshold able to cause between 2.4 and 5.4 log reductions under dark storage. Photorepair was not avoided but lower photoreactivation was observed after higher fluence inducing more than 6 log reductions under dark storage. Both L. innocua and L. monocytogenes serotype 1/2b exhibited the highest photoreactivation levels whereas serotypes 1/2a showed the lowest ones. The overall inactivation and photoreactivation responses of tested Listeria strains were comparable indicating that L. innocua may be a good surrogate for the safe evaluation, optimization and validation of PL technology to control L. monocytogenes in food products and food processing facilities.  相似文献   

15.
Combined methods of fluorescence spectrometry with chemometrics were used to monitor oxidation deterioration of edible oil. Synchronous and three dimensional fluorescence spectroscopy techniques were proposed for monitoring palm oil, camellia oil, sunflower oil and perilla oil during oven accelerated oxidation. Principal component analysis plot of fluorescence intensity (λex = 320–700 nm) clearly showed oxidative evolution of oils over heating time. High saturated or monounsaturated oils exhibited high regression coefficients between peroxide values and fluorescence intensity (R 2  = 0.973 for 400 nm in palm oil; R 2  = 0.956 for 370 nm in camellia oil). High diunsaturated oil exhibited high regression coefficient between nonpolar carbonyl compounds and fluorescence intensity (R 2  = 0.970 for 370 nm in sunflower oil). High triunsaturated oil exhibited high regression coefficient between p-anisidine value and fluorescence intensity (R 2  = 0.938 for 665 nm in perilla oil). In conclusion, Fluorescence spectroscopy is a rapid and green nondestructive method for oxidation monitoring. Differences of fatty acid compositions played key rules in formation of oxidation products and evolution of fluorescence spectra.  相似文献   

16.
The effect of high-intensity pulsed electric fields (HIPEF) processes on Listeria innocua inhibition, physicochemical parameters and activity of oxidative enzymes of mango juice was evaluated to set the optimal HIPEF treatment time. Quality parameters, microbial population and bioactive compounds of HIPEF-treated (35 kV/cm, 1800 μs) and thermally treated (TT) (90 °C, 60 s) mango juices were studied and compared with those non-treated during 75 days of storage at 4 °C. HIPEF treatment for 800 μs ensured 5 log reductions of L. innocua. Polyphenoloxidase (PPO), lipoxygenase (LOX) and peroxidase (POD) residual activities were significantly reduced to 70, 53 and 44%, respectively, at treatment times of 1800 μs. Similar sensory properties compared with fresh mango juice were attained from product treated at 1800 μs. Moreover, fresh mango juice colour (L* = 38.79, h° = 106.57) was preserved after HIPEF treatment throughout storage. Moulds and yeasts and psychrophilic bacteria counts in HIPEF-treated (1800 μs) mango juice remained below 6 log cycles CFU/mL up to 2 months of refrigerated storage. The content of total phenolic compounds in those HIPEF-treated increased from 333 to 683 μg of GAE/mL from day 0 to the end of storage. Hence, the application of HIPEF may be a feasible treatment in order to ensure microbiological stability, high bioactive compound content and fresh-like characteristics of mango juice.  相似文献   

17.
Novel thin-layer chromatography-digital image-based analytical methods were developed for the quantitation of ergosterol and chitin content in six food matrices (rice, wheat, maize, sorghum, groundnut, and sunflower), artificially infested with Aspergillus flavus (MTCC 6513)/Fusarium verticillioides (MRC 826). For ergosterol, single-step method, based on liquid/liquid extraction, was followed by thin-layer chromatography (TLC). Chitin was solubilized using lithium chloride (5%) in dimethyl acetamide and converted to chitosan using 5 N NaOH and subsequently complexed with calcofluor white dye. The absorption and emission maxima of chitosan-calcofluor complex were recorded at λ 350/230 and 430 nm, respectively. The sensitivity based on the limit of detection (LOD) was found to be 100 ng both for ergosterol and chitin analysis. Based on ergosterol and chitin analysis, groundnut and maize were found to be suitable substrates for A. flavus (p?<?0.013 and p?<?0.01), while sorghum followed by groundnut and sunflower were found to be ideal for F. verticillioides (p?<?0.01 and p?<?0.0001) and rice was established as poor substrate as there was no growth on it up to 12 days of incubation. A strong correlation was found between ergosterol and chitin contents with regression (r 2) values of 0.974 and 0.997 in food grains inoculated with A. flavus and F. verticillioides, respectively, during the period of infection. The authenticity of the two methods developed was further confirmed by applying them to commercial food grains and flours. Thus, ergosterol in combination with chitin analysis could be successfully used as an index of fungal contamination employing TLC-digital-based analytical methods.  相似文献   

18.
With significant interest in incorporating beans, lentils, and pulses as nutrient-rich healthy food sources into our diets, a reliable technique for their rapid and accurate quality evaluation is needed. The method of single kernel characterization to determine the physical properties (i.e., diameter, weight, moisture content, and hardness) of mung beans was assessed in this study. Two mung bean varieties were characterized using the single kernel characterization technique and the results were compared to traditional methods. It was observed that predicted bean weights were accurate to known laboratory measurements (R = 0.98, n = 200). Individual bean characterization was moderately (R = 0.58–0.7, n = 100) correlated in regard to the true diameter of mung beans. An evaluation on moisture content was performed after tempering the two bean varieties to four moisture levels and a good correlation was obtained with the oven drying method (R = 0.92, n = 24). Hardness values obtained by single kernel characterization were moderately correlated to maximum forces measured using an Instron universal testing system. However, a common relationship was observed between mung bean hardness and moisture content when using both methods. Compared to visual inspection, automated characterization of single beans is a superior technique to measure the geometrical and mechanical properties of mung beans in an industrial setup where high throughput is paramount.  相似文献   

19.
New generation decanters allow operators to make real-time adjustments during the virgin olive oil extraction process in order to gain the best performance possible. However, the opportunity to act in line requires a deep understanding of the consequences of changing machine parameters. To this purpose, an experiment was carried out at industrial scale. The decanter feed rate (Fr), ranging from 4075 to 5820 kg h?1, the bowl/screw conveyor differential speed (?n), set at 18 and 22, and two ripening degrees of the olives were considered as process variables. Two combinations Fr-?n, namely 4620 kg h?1 at ?n-18 and 5210 kg h?1 at ?n-22, were found to similarly maximize the process efficiency, regardless the raw material features. After pointing out the best working settings, the corresponding virgin olive oils were compared. The analysis of variance showed that peroxide value, K 232, K 270, phenols, chlorophylls, β-tocopherol, fruity and bitter notes, and C6 volatile compounds were significantly affected by the machine parameters. An inverse proportionality was observed between the combination Fr-?n and the phenolic compounds. On the whole, the sampling factor exerted a larger influence on the product quality than the decanter set-up.  相似文献   

20.
Staphylococcus aureus (S. aureus) is an important food-borne pathogen which poses a severe threat to public health worldwide. Rapid detection of S. aureus with high sensitivity is of particular importance for food safety. In this study, a novel single primer isothermal amplification (SPIA) method was established to detect S. aureus in food, targeting the accessory gene regulator (agr) gene with a DNA/RNA primer. The developed SPIA method has the advantages of visualization and avoiding tedious electrophoresis. In order to confirm the specificity of this method, 7 S. aureus strains and 26 non-S. aureus strains were detected with their pure cultures. The sensitivity and detection limit of S. aureus with artificially inoculated raw pork products by SPIA were evaluated through fluorescence and turbidity by naked eye and the amplification curve, which were 4.3?×?100 CFU/mL and 5.6?×?100 CFU/g, respectively. Compared with the conventional PCR method, the SPIA has 100-fold higher sensitivity and 100-fold lower detection limit. Therefore, the developed SPIA method is a potentially reliable tool for rapid and visual detection of S. aureus in food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号