首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lim JM  Jeong JH  Lee JH  Moon JH  Chung YS  Kim KH 《Indoor air》2011,21(2):145-155
In this study, elemental composition of PM2.5 and the status of indoor/outdoor pollution were investigated in a commercial building near a roadside area in Daejeon, Korea. A total of 60 parallel PM2.5 samples were collected both on the roof (outdoor) and in an indoor office of a building near a highly congested road during the spring and fall of 2008. The concentrations of 23 elements were analysed from these PM2.5 samples using instrumental neutron activation analysis. PM2.5 levels in indoor environment (47.6 ± 16.5 μg/m(3)) were noticeably higher than the outdoor levels (37.7 ± 17.2 μg/m(3)) with the I/O concentration ratio of 1.37 ± 0.33 [correlation coefficient (r) = 0.89, P < 0.001]. Principal component analysis results coincidently showed the predominance of sources such as soil dust, traffic, oil/coal combustion and road dust for both indoor and outdoor microenvironments. An isolated source in the indoor environment was assigned to environmental tobacco smoke (ETS) with high factor loading of Ce, Cl, I, K, La and Zn. The overall results of our study indicate that the sources of indoor constituents were strongly dependent on outdoor processes except for the ones affected by independent sources such as ETS. PRACTICAL IMPLICATIONS: An improved understanding of the factors affecting the indoor PM2.5 concentration levels can lead to the development of an efficient management strategy to control health risks from exposure to indoor PM2.5 and related toxic components. A comparison of our comprehensive data sets indicated that most indoor PM2.5 and associated elemental species were strongly enriched by indoor source activities along with infiltration of ambient outdoor air for a naturally ventilated building.  相似文献   

2.
Samples of particulate matter less than or equal to 10 μm (PM10) were collected every other day using an Airmetrics MiniVol portable air sampler in Constantine, the third largest and most densely populated city of Algeria with a population of 600,000. The main objective of this study was to assess the concentrations of particulate matter (PM) with an aerodynamic diameter ≤10 μm (PM10), and dust-laden trace metals in a residential area with heavy traffic during two months, from 25 March 2010 to 24 May 2010. Furthermore, the present work examines the daily levels of metallic elements Fe, Zn and Cu. The PM10 concentrations ranged from 7.6 to 159.4 μg/m3 during the study period. WHO’s daily PM10 average guide value of 50 μg/m3 was exceeded 10 times over 31 samples. HYSPLIT back trajectories were used to identify the source locations of the pollutants. Rain scavenging of atmospheric particulate matter led to a substantial decrease in PM10 concentrations. During the study period, Zn was detected in one sample at a concentration of 0.78 μg/m3. It is believed that air masses originating from Iceland’s Eyjafjöll volcano may have transported clouds of ashes rich in Zn to the sampling site on that occasion. A maximum of 2.92 μg/m3 of Cu was observed when the volcanic cloud reached the sampling site four times during the corresponding 24-h sampling period.  相似文献   

3.
Indoor air PM2.5 and PM10 samples were collected at the different types of indoor enviornment in the four hospitals and their adjacent outdoor environments in Guangzhou, China, during the summertime. The objectives of this study were (1) to characterize the indoor PM concentrations and associated carbonaceous species in hospitals, (2) to investigate the potential indoor sources and (3) to reconstruct carbonaceous composition in PM. Additionally, regression analysis was made to evaluate effect of outdoor sources to indoor PM levels and comparison was made between I/O levels in different types of indoor environment to evaluate effects of human activities and ventilation types to indoor PM levels.  相似文献   

4.
张鹏妍  黄金香  孙欢欢 《山西建筑》2014,(3):211-212,240
通过对区域环境空气中PM2.5的采样监测,分析了区域PM2.5的时间变化特征及温度、湿度、风速对其质量浓度产生的影响,并对PM2.5与PM10污染水平及关系进行了研究,得出了一些有意义的结论。  相似文献   

5.
Analysis of indoor PM2.5 exposure in Asian countries using time use survey   总被引:1,自引:0,他引:1  
Most household fuels used in Asian countries are solid fuels such as coal and biomass (firewood, crop residue and animal dung). The particulate matter (PM), CO, NOx and SOx produced through the combustion of these fuels inside the residence for cooking and heating has an adverse impact on people's health. PM 2.5 in particular, consisting of particles with an aerodynamic diameter of 2.5 μm or less, penetrates deep into the lungs and causes respiratory system and circulatory system diseases and so on. As a result, the World Health Organization (WHO) established guideline values for this type of particulate matter in 2005. In this study, the authors focused on PM 2.5 and estimated indoor exposure concentrations for PM 2.5 in 15 Asian countries. For each environment used for cooking, eating, heating and illumination in which people are present temporarily (microenvironment), exposure concentrations were estimated for individual cohorts categorized according to sex, age and occupation status. To establish the residence time in each microenvironment for each of the cohorts, data from time use surveys conducted in individual countries were used. China had the highest estimate for average exposure concentration in microenvironment used for cooking at 427.5 μg/m3 , followed by Nepal, Laos and India at 285.2 μg/m3, 266.3 μg/m3 and 205.7 μg/m3 , respectively. The study found that, in each country, the PM2.5 exposure concentration was highest for children and unemployed women between the ages of 35 and 64. The study also found that the exposure concentration for individual cohorts in each country was greatly affected by people's use of time indoors. Because differences in individual daily life activities were reflected in the use of time and linked to an assessment of exposure to indoor air-polluting substances, the study enabled detailed assessment of the impact of exposure.  相似文献   

6.
7.
Impacts of individual behavior on personal exposure to particulate matter (PM) and the associated individual health effects are still not well understood. As outdoor PM concentrations exhibit highly temporal and spatial variations, personal PM exposure depends strongly on individual trajectories and activities. Furthermore, indoor environments deserve special attention due to the large fraction of the day people spend indoors. The indoor PM concentration in turn depends on infiltrated outdoor PM and indoor particle sources, partially caused by the activities of people indoor.We present an approach to estimate PM2.5 exposure levels for individuals based upon existing data sources and models. For this pilot study, six persons kept 24-hour diaries and GPS tracks for at least one working day and one weekend day, providing their daily activity profiles and the associated geographical locations. The survey took place in the city of Münster, Germany in the winter period between October 2006 and January 2007. Environmental PM2.5 exposure was estimated by using two different models for outdoor and indoor concentrations, respectively. For the outdoor distribution, a dispersion model was used and extended by actual ambient fixed site measurements. Indoor concentrations were modeled using a simple mass balance model with the estimated outdoor concentration fraction infiltrated and indoor activities estimated from the diaries. A limited number of three 24-hour indoor measurements series for PM were performed to test the model performance.The resulting average daily exposure of the 14 collected profiles ranged from 21 to 198 µg m− 3 and showed a high variability over the day as affected by personal behavior. Due to the large contribution of indoor particle sources, the mean 24-hour exposure was in most cases higher than the daily means of the respective outdoor fixed site monitors.This feasibility study is a first step towards a more comprehensive modeling approach for personal exposure, and therefore restricted to limited data resources. In future, this model framework not only could be of use for epidemiological research, but also of public interest. Any individual operating a GPS capable device may become able to obtain an estimate of its personal exposure along its trajectory in time and space. This could provide individuals a new insight into the influence of personal habits on their exposure to air pollution and may result in the adaptation of personal behavior to minimize risks.  相似文献   

8.
Residents of low-income multifamily housing can have elevated exposures to multiple environmental pollutants known to influence asthma. Simulation models can characterize the health implications of changing indoor concentrations, but quantifying the influence of interventions on concentrations is challenging given complex airflow and source characteristics. In this study, we simulated concentrations in a prototype multifamily building using CONTAM, a multizone airflow and contaminant transport program. Contaminants modeled included PM(2.5) and NO(2) , and parameters included stove use, presence and operability of exhaust fans, smoking, unit level, and building leakiness. We developed regression models to explain variability in CONTAM outputs for individual sources, in a manner that could be utilized in simulation modeling of health outcomes. To evaluate our models, we generated a database of 1000 simulated households with characteristics consistent with Boston public housing developments and residents and compared the predicted levels of NO(2) and PM(2.5) and their correlates with the literature. Our analyses demonstrated that CONTAM outputs could be readily explained by available parameters (R(2) between 0.89 and 0.98 across models), but that one-compartment box models would mischaracterize concentrations and source contributions. Our study quantifies the key drivers for indoor concentrations in multifamily housing and helps to identify opportunities for interventions. PRACTICAL IMPLICATIONS: Many low-income urban asthmatics live in multifamily housing that may be amenable to ventilation-related interventions such as weatherization or air sealing, wall and ceiling hole repairs, and exhaust fan installation or repair, but such interventions must be designed carefully given their cost and their offsetting effects on energy savings as well as indoor and outdoor pollutants. We developed models to take into account the complex behavior of airflow patterns in multifamily buildings, which can be used to identify and evaluate environmental and non-environmental interventions targeting indoor air pollutants which can trigger asthma exacerbations.  相似文献   

9.
10.
以探讨北京城区绿化覆盖率和绿地类型与空气中PM10之间的关系为目的,选取了方庄小区、天坛公园、东四六条、全国农业展览馆、国家奥林匹克体育中心、北京市市委党校、清华大学等北京城区7个代表地点,各地点又选取了不同的绿地类型.从2001年1月至2003年1月,历经2年,定期测定了空气中的PM10.结果表明,提高总体绿化覆盖率和营造合理的绿地类型能够在一定程度上降低城区空气中的PM10浓度,提高空气质量.  相似文献   

11.
张有慧 《山西建筑》2006,32(18):351-352
通过对可吸入颗粒物PM10的来源及危害性的介绍,以及对太原市某大学新建校区颗粒物的实地采样和分析,说明此校区颗粒物污染程度的严重性,并从校区规划的角度初步探讨了如何控制可吸入颗粒物,并提出了相关建议。  相似文献   

12.
Atmospheric particulate matter (PM) fractions (PM(10) and PM(2.5)) were sampled concurrently between June 2004 and May 2005 at two sites (urban and suburban) in Izmir, Turkey. The elemental composition of PM (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) was determined using inductively coupled plasma-optical emission spectrometer. Elemental compositions of several PM sources were also characterized. Positive matrix factorization (PMF) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions to air concentrations. The major contributors to PM were fossil fuel burning, traffic emissions, mineral industries and marine salt according to the PMF results. However, undetermined parts were more than 40%. On the other hand, the contributions to PM could be determined completely by CMB, and the dominant contributor was traffic with >70% at the two sites. Fossil fuel burning, mineral industries, marine salt and natural gas-fired power plant were the minor contributors.  相似文献   

13.
Fourier transform infrared (FTIR) spectra of outdoor, indoor, and personal fine particulate matter (PM(2.5)) samples were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. FTIR spectroscopy provides functional group information about the entire PM(2.5) sample without any chemical preparation. It is particularly important to characterizing the poorly understood organic fraction of PM(2.5). To our knowledge this is the first time that FTIR spectroscopy has been applied to a PM(2.5) exposure study. The results were used to chemically characterize indoor air and personal exposure. Sulfate was strongest in outdoor samples, which is consistent with the generally accepted understanding that sulfate is of outdoor origin. Absorbances attributed to soil dust were also seen in many outdoor and some indoor and personal samples. Inorganic nitrate absorbances were a common feature of many California and some New Jersey samples. Carbonyl absorbances showed substantial variation in strength, number of peaks, and wave number shift between samples, indicating variability in composition and sources. Absorbances attributed to aliphatic hydrocarbon and amide functional groups were enhanced in many personal and indoor samples, which suggested the influence of indoor sources in these homes. We speculate that meat cooking is one possible source of particulate amides. PRACTICAL IMPLICATIONS: To our knowledge this is the first time that FTIR spectroscopy has been used to characterize the composition of indoor and personal PM(2.5). The presence of sulfate, nitrate, ammonium, soil dust and a number of organic functional groups are all detected in one analysis on filter samples without extraction or other sample preparation. Differences between indoor and outdoor spectra are used to identify spectral features due to indoor-generated PM(2.5). Particularly interesting are the much larger aliphatic absorbances, shifts in carbonyl absorbances, and occasional small amide absorbances found in indoor and personal spectra but rarely in outdoor spectra. These observations are important because organics make up a large portion of PM(2.5) mass and their composition and properties are poorly characterized. The properties and behavior of organic compounds in airborne particles are often predicted based on their functional group composition. This analysis begins the development of a better understanding of the functional group composition of indoor and personal PM(2.5) and how it differs from that of outdoor PM(2.5). Eventually this will lead to an improved understanding of the properties, behavior and effects of PM(2.5) of indoor and outdoor origin.  相似文献   

14.
15.
Lung SC  Kao MC  Hu SC 《Indoor air》2003,13(2):194-199
Burning incense to worship Gods and ancestors is a traditional practice prevalent in Asian societies. This work investigated indoor PM10 concentrations resulting from incense burning in household environments under two conditions: closed and ventilated. The exposure concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) were estimated. The factors of potential exposure were also evaluated. Under both conditions, samples were taken at three locations: 0.3, 3.5 and 7 m away from the altar during three periods: incense burning, the first 3 h, and the 4-6 h after cessation of combustion. PAH concentrations of incense smoke were assessed in the laboratory. Personal environment monitors were used as sampling instruments. The results showed a significant contribution of incense burning to indoor PM10 and particulate PAH concentrations. PM10 concentrations near the altar during incense burning were 723 and 178 microg/m3, more than nine and 1.6 times background levels, under closed and ventilated conditions, respectively. Exposure concentrations of particle-bound PAHs were 0.088-0.45 microg/m3 during incense burning. On average, PM10 and associated PAH concentrations were about 371 and 0.23 microg/m3 lower, respectively, in ventilated environments compared with closed conditions. Concentrations were elevated for at least 6 h under closed conditions.  相似文献   

16.
17.
Since 1995 airborne particles have been sampled near Lisbon and analysed by PIXE at ITN. On the Summer of 2004 extremely high concentrations of 14 µg/m3 of chlorine in PM2.5 were determined in a week average sample. Later in 2004 and in 2005 similar events occurred. A 12 year database of PIXE data on airborne elemental concentrations (1995 to 2006) compiled on 2007 was then analysed for PM2.5 chlorine concentrations above 1 µg/m3, and showed that the number of this type of events per year is increasing since 1995 up until the present. A quest for time coincident abnormal health data reports was carried out and revealed a 30% raise in diabetes mellitus incidence from 2003 to 2004 followed by a 20% raise from 2004 to 2005. After a first short publication at the XIth Int. PIXE Conference in 2007 (Reis et al., 2007a) the problem remained live. Taking into account new insights into the problem, recently published data, and biomonitoring data that were previously not considered, it was possible to establish a highly probable link between the abnormally high values of PM2.5 chlorine measured in the Lisbon area and the surge in diabetes mellitus incidence in Portugal in 2004 and 2005. Data, reasoning, possible mechanisms and conclusions regarding this link are reported in the present paper.  相似文献   

18.
The present investigation was carried out to assess the trace mineral profile of milk from lactating cows reared around different industrial units and to examine the effect of blood and milk concentration of lead and cadmium on copper, cobalt, zinc and iron levels in milk. Respective blood and milk samples were collected from a total of 201 apparently healthy lactating cows above 3 years of age including 52 cows reared in areas supposed to be free from pollution. The highest milk lead (0.85 ± 0.11 µg/ml) and cadmium (0.23 ± 0.02 µg/ml) levels were recorded in lactating cows reared around lead–zinc smelter and steel manufacturing plant, respectively. Significantly (P < 0.05) higher concentration of milk copper, cobalt, zinc and iron compared to control animals was recorded in cows around closed lead cum operational zinc smelter. Analysis of correlation between lead and other trace elements in milk from lactating cows with the blood lead level > 0.20 µg/ml (n = 79) revealed a significant negative correlations between milk iron and milk lead (r = − 0.273, P = 0.015). However, such trend was not recorded with blood lead level < 0.20 µg/ml (n = 122). The milk cobalt concentration was significantly correlated (r = 0.365, P < 0.001) with cadmium level in milk and the highest milk cadmium (> 0.10 to 0.39 µg/ml) group had significantly (P < 0.05) increased milk cobalt. It is concluded that increased blood and milk lead or cadmium level as a result of natural exposure of lactating cows to these environmental toxicants significantly influences trace minerals composition of milk and such alterations affect the milk quality and nutritional values.  相似文献   

19.
Chemistry of trace elements in coalbed methane product water   总被引:1,自引:0,他引:1  
Extraction of methane (natural gas) from coal deposits is facilitated by pumping of aquifer water. Coalbed methane (CBM) product water, produced from pumping ground water, is discharged into associated unlined holding ponds. The objective of this study was to examine the chemistry of trace elements in CBM product water at discharge points and in associated holding ponds across the Powder River Basin, Wyoming. Product water samples from discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. Samples were analyzed for pH, Al (aluminum), As (arsenic), B (boron), Ba (barium), Cr (chromium), Cu (copper), F (fluoride), Fe (iron), Mn (manganese), Mo (molybdenum), Se (selenium), and Zn (zinc). Chemistry of trace element concentrations were modeled with the MINTEQA2 geochemical equilibrium model. Results of this study show that pH of product water for three watersheds increased in holding ponds. For example the pH of CBM product water increased from 7.21 to 8.26 for LPR watershed. Among three watersheds, the CBM product water exhibited relatively less change in trace element concentrations in CHR watershed holding ponds. Concentration of dissolved Al, Fe, As, Se, and F in product water increased in BFR watershed holding ponds. For example, concentration of dissolved Fe increased from 113 to 135 microg/L. Boron, Cu, and Zn concentrations of product water did not change in BFR watershed holding ponds. However, concentration of dissolved Ba, Mn, and Cr in product water decreased in BFR watershed holding ponds. For instance, Ba and Cr concentrations decreased from 445 to 386 microg/L and from 43.6 to 25.1 microg/L, respectively. In the LPR watershed, Al, Fe, As, Se, and F concentrations of product water increased substantially in holding ponds. For example, Fe concentration increased from 192 to 312 microg/L. However, concentration of dissolved Ba, Mn, Cr, and Zn decreased in holding ponds. Geochemical modeling calculations suggested that observed increase of Al and Fe concentrations in holding ponds was due to increase in concentration of Al(OH)(4)(-) and Fe(OH)(4)(-) species in water which were responsible for pH increases. Decreases in Ba, Mn, Cr, and Zn concentrations were attributed to the increase in pH, resulting in precipitates of BaSO(4) (barite), MnCO(3) (rhodochrosite), Cr(OH)(2) (chromium hydroxide), and ZnCO(3) (smithsonite) in pond waters, respectively.  相似文献   

20.
吴正旺  马欣  杨鑫 《华中建筑》2013,(10):46-48
对北方工业大学校园内几种建筑布局及其绿地中空气的pM2.5浓度所进行的调查表明,不同建筑布局会影响其PM2.5的浓度分布,而不同绿地形式也会对PM2.5浓度产生相应的影响,进一步地,建筑布局与绿地形式的不同结合也导致了PM2.5浓度的变化.调查还显示:①灰霾天气条件下,建筑群中空气的PM2.5浓度远超国家标准;②所调查的多种绿地均可在一定程度上降低空气的PM2.5浓度,但效果小于植物群落;③建筑布局的高度、围合方式对空气中PM2.5的浓度具有一定影响;④多层合院式布局中的林荫道能有效减少PM2.5浓度.居住区规划设计应当注意采取适当的布局,以利于减少PM2,5暴露.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号