首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

2.
The main disadvantage of reinforced concrete beams retrofitted with steel or fiber reinforced polymer (FRP) plates adhesively bonded to the external surfaces is the premature debonding of the plates before reaching the desired strength or ductility. One of the main mechanisms of debonding failure is intermediate crack (IC) debonding, which is initiated by the formation of flexural cracks in the vicinity of the plates causing slip to occur at the plate/concrete interfaces. Much of the existing research focuses on the bond–slip relationship at the plate/concrete interface, with a lack of attention on the IC debonding behavior of flexural members. In this research, a model is described for IC debonding of plated RC beams that is based on partial interaction theory. To allow a better understanding of the IC debonding behavior of plated members, studies are carried out using the proposed model to study the effects of variations in crack spacings and rate of change of moment, and it is shown that both of these factors as well as the number of cracks in the beam can have large effects on the local behavior and the resultant strains in the plated member.  相似文献   

3.
An experimental and analytical investigation of bond durability of E-glass fiber-reinforced polymer reinforcement bars in concrete beams is presented. Beams were conditioned with sustained flexural loads in indoor, outdoor, 60°C alkaline solution, or freeze/thaw environments for up to 3?years, after which they were subjected to eccentric three-point flexure tests to evaluate bond. Experimental bar force and slip were used to draw direct conclusions on bond durability, and also to calibrate a proposed local bond–slip model that incorporates concrete cover splitting. Experimental bar force at the onset of free-end slip varied little after any of the conditionings, although the characteristic of bond failure was noted to be less ductile in the moister environments. The interfacial fracture energy associated with bond–slip did not change with conditioning time in any of the environments except freeze/thaw, where a monotonic reduction versus time was seen. The effective bond length of the bar under various conditionings varied roughly in proportion to the local slip at complete local bond failure.  相似文献   

4.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

5.
In the field of reinforced-concrete (RC) structures, the use of fiber reinforced plastic rebars (FRP rebars) as an alternative to the steel reinforcements appears very promising, especially if such structures are exposed to corrosive environments. However, a better understanding of the mechanical behavior of FRP reinforcements—in particular bond behavior—is needed in order to use them for practical purposes. For this reason, in the last few years a number of tests on several types of FRP rebars has been conducted in order to evaluate the interaction phenomena between FRP rebars and the concrete matrix and to evidence behavioral differences with respect to the deformed steel rods. In this paper a state-of-the-art report on the bond of FRP bars to concrete is presented. Numerous tests are analyzed to better understand bond mechanisms and the influence of type of fiber, outer surface (shape and type of matrix), and other significant parameters (i.e., confining pressure, bar diameter, compressive concrete strength) on bond performances. Furthermore, some analytical models of bond-slip behavior are examined to assess their adequacy to reproduce the experimental bond behavior. In particular, the investigation focuses on the reliability of the well-known model by Malvar (the first one dedicated to FRP reinforcements) as well as on the model by Eligehausen, Popov, and Bertero, developed for steel reinforcements but successfully applied to FRP ones. In addition, the effectiveness of two analytical formulations proposed by the authors, the first one representing the ascending branch of the bond-slip curve and the second the entire curve, is demonstrated.  相似文献   

6.
The effectiveness of a new structural material, namely, textile-reinforced mortar (TRM), was investigated experimentally in this study as a means of confining oldtype reinforced concrete (RC) columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on nearly full scale nonseismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Ten cantilevertype specimens with either continuous or lap-spliced deformed longitudinal reinforcement at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of oldtype RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap-spliced bars. Compared with their FRP counterparts, the TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of reinforced concrete columns, including poorly detailed ones with or without lap splices in seismic regions.  相似文献   

7.
This paper examines the behavior of Eurocrete fiber-reinforced polymer (FRP) bars (glass, carbon, aramid, and hybrid) in concrete under direct pullout conditions. More than 130 cube specimens were tested in direct pullout where no splitting was allowed to develop. In normal concrete, the mode of bond failure of FRP bars was found to differ substantially from that of deformed steel bars because of damage to the resin rich surface of the bar when pullout takes place. Bond strengths developed by carbon fiber-reinforced polymer and glass fiber-reinforced polymer bars appear to be very similar and just below what is expected from deformed steel bars under similar experimental conditions. The load slip curves highlight some of the fundamental differences between steel and FRP materials. This paper reports in detail on the influence of various parameters that affect bond strength and development such as the embedment length, type, shape, surface characteristics, and diameter of the bar as well as concrete strength. The testing arrangement is also shown to influence bond strength because of the “wedging effect” of the bars.  相似文献   

8.
9.
In the case of heavily reinforced concrete structural members, bundled bars are required rather than spaced bars. The use of spliced bundled bars is necessary when available bar lengths are limited. No design recommendations regarding the use of bundled or spliced bundled FRP bars are available. The results of four-point flexural testing of nine concrete beams reinforced with spliced bundled CFRP bars are presented herein. The effects of the type of bundle and splice length on the bond strength of bundled CFRP bars are investigated. Based on the experimental results, a procedure for determining the critical splice length of FRP bars is presented and the corresponding values of bond stresses can be predicted. Moreover, the ultimate strength analysis method is used to predict the maximum stress in spliced bundled CFRP bars. Finally, comparisons with the existing recommendations regarding the use of bundled steel bars and the recommended modifications for bundled CFRP bars are presented.  相似文献   

10.
A three-dimensional (3D) hypoelastic material model for modeling material properties of cracked reinforced concrete is proposed. Material properties of multidirectionally cracked reinforced concrete are represented by the material properties of intact concrete and a number of uniaxially cracked concrete with their coupling solids. Cracking effects due to multiple nonorthogonal cracks are traced in each uniaxially cracked concrete. Tension softening and aggregate interlock occurring at the crack interface as well as tension stiffening and compression softening initiated in concrete between cracks due to multiple nonorthogonal cracks are all incorporated explicitly. RC panels under in-plane loading and RC slab under pure torsion have been analyzed. The developed 3D hypoelastic material model has been proved to be efficient and effective in modeling the material behaviors of cracked reinforced concrete in shell-type RC structures. The deformational response, the ultimate strength, and failure mode can be captured reasonably well.  相似文献   

11.
The local bond mechanics of glass-fiber reinforced polymer (GFRP) bars in normal strength concrete was investigated through experimental testing and analytical modeling. The experimental program was comprised of 30 direct tension pullout specimens with short anchorages. A novel test setup, specially designed so as to minimize the spurious influence of testing conditions on measured bond properties was adopted in the study. Parameters considered were the bar roughness and diameter, the size effect expressed by the constant cover to bar diameter ratio, and the external confining pressure exerted over the anchorage length by transverse externally bonded FRP sheets. Results of the study were summarized in the form of local bond-slip curves, whereby performance limit states were quantified by the amount of loaded end slip and bond strength. An analytical model of the bond stress-slip response of a GFRP bar was derived from first principles and calibrated against the test data of the present investigation. Using the calibrated model, design values for bond and slip were estimated with reference to the code limit state model for bond.  相似文献   

12.
Near-surface-mounted (NSM) reinforcement has become a well-known method for strengthening existing concrete structures. The bond between the NSM reinforcing bars and concrete is the key factor in the NSM technique. In the NSM technique, there are two bond interfaces: one between the NSM bar and the adhesive, and the other between the adhesive and the concrete. For this technique to perform efficiently, these two interfaces need to be investigated. On the other hand, concrete structures that require rehabilitation are often exposed to aggressive environments. Many of these environments are related to cold-climate conditions as can be found in Canada. Environmental factors including freeze/thaw action, exposure to deicing salts, and sustained low temperatures combine to attack the integrity of repaired structures. Consequently, repair materials for the Canadian infrastructure must be able to withstand these harsh conditions for prolonged periods of time. A total of 80 NSM-fiber-reinforced polymer (FRP) bars installed in C-shaped concrete specimens were tested in pull-out setup to failure. Sixty specimens were tested at normal room temperature, while the remaining 20 specimens were tested after conditioning in an environmentally controlled chamber for 200 freeze/thaw cycles. The dimensions of the specimens were designed, upon a preliminary phase of testing, to ensure that no transverse cracking would occur in the specimen before bond failure of the NSM bar. The results are presented in term of failure load, average bond stress, strains in FRP bar, end slip, and mode of failure. A bond-slip model was proposed for the used FRP bars.  相似文献   

13.
Fiber reinforced polymers (FRPs) have a thermal expansion in the transverse direction much higher than in the longitudinal direction and also higher than the thermal expansion of hardened concrete. The difference between the transverse coefficient of thermal expansion of FRP bars and concrete may cause splitting cracks within the concrete under temperature increase and, ultimately, failure of the concrete cover if the confining action of concrete is insufficient. This paper presents the results of an experimental investigation to analyze the effect of the ratio of concrete cover thickness to FRP bar diameter (c/db) on the strain distributions in concrete and FRP bars, using concrete cylindrical specimens reinforced with a glass FRP bar and subjected to thermal loading from ?30?to?+80°C. The experimental results show that the transverse coefficient of thermal expansion of the glass FRP bars tested in this study is found to be equal to 33 (×10?6?mm/mm/°C), on average and the ratio between the transverse and longitudinal coefficients of thermal expansion of these FRP bars is equal to 4. Also, the cracks induced by high temperature start to develop on the surface of concrete cylinders at a temperature varying between +50 and +60°C for specimens having a ratio of concrete cover thickness to bar diameter c/db less than or equal to 1.5. A ratio of concrete cover thickness to glass fiber reinforced polymers (GFRP) bar diameter c/db greater than or equal to 2.0 is sufficient to avoid cracking of concrete under high temperature up to +80°C. The analytical model, presented in this paper, is in good agreement with the experimental results, particularly for negative temperature variations.  相似文献   

14.
This paper presents the main features of an analytical model recently developed to predict the near-surface mounted (NSM) fiber-reinforced polymer (FRP) strips shear strength contribution to a reinforced concrete (RC) beam throughout the beam’s loading process. It assumes that the possible failure modes that can affect the ultimate behavior of an NSM FRP strip comprise: loss of bond (debonding); concrete semiconical tensile fracture; mixed shallow-semicone-plus-debonding; and strip tensile fracture. That model was developed by fulfilling equilibrium, kinematic compatibility, and constitutive law of both the adhered materials and the bond between them. The debonding process of an NSM FRP strip to concrete was interpreted and closed-form equations were derived after proposing a new local bond stress-slip relationship. The model proposed also addressed complex phenomena such as the interaction between the force transferred to the surrounding concrete through bond stresses and concrete fracture as well as the interaction among adjacent strips. The main features of the proposed modeling strategy are shown along with the main underlying physical-mechanical concepts and assumptions. Using recent experimental data, the predictive performance of the model is assessed. The model is also applied to single out the influence of relevant parameters on the NSM technique effectiveness for the shear strengthening of RC beams.  相似文献   

15.
The bond behavior of reinforcing bars in concrete is a critical issue in the design of reinforced concrete structures. This study focuses on the bond strength of fiber reinforced polymer (FRP) rebars in normal strength concrete. Four different types of rebars were tested using the pullout method: aramid FRP (AFRP); carbon FRP (CFRP); glass FRP (GFRP), and steel. This involved a total of 151 specimens containing 6, 8, 10, 16, and 19?mm rebars embedded in a 203?mm concrete cube. The test embedment lengths were five, seven, and nine times the rebar diameter (db). For each rebar, the test results include the bond stress–slip response and the mode of failure. The test results showed that the bond strength of an FRP rebar is, on average, 40–100% the bond strength on a steel rebar for pullout failure mode. Based on this research, a proposal for the average bond strength of straight FRP rebars in normal strength concrete is made, which verifies an existing bond strength relationship (GFRP) and extends its application to AFRP and CFRP. It is an expression that is a function of the rebar diameter, and the concrete compressive strength.  相似文献   

16.
This paper presents experimental results on the behavior in tension of reinforced concrete members strengthened with carbon fiber sheets (CFS). CFS reduced the crack spacing and brought about good crack width control as well as a significant change in the average bond stress and the average stress of steel reinforcing bars and concrete. The deterioration mechanism of the CFS bond properties near cracks was presented.  相似文献   

17.
The problem of long-term creep deformation of reinforced concrete tensile elements strengthened by external fiber reinforced plastic (FRP) plates is studied. Formation of discrete cracks in concrete under tension is taken into account. A kinematic model is used, where relative slips between concrete, steel bars, and FRP plates are considered, governed by viscous interface shear stress–slip laws. Bazant’ solidification theory and exponential algorithm are used to obtain incremental constitutive equations for concrete as well as for steel-concrete and FRP-concrete interface laws. Moreover, cohesive normal stresses across transverse cracks in concrete are considered. The incremental differential system of equations is transformed into a nonlinear algebraic system by a finite difference discretization with respect to axial coordinate. Several numerical examples are presented, concerning both short-term and long-term loadings. It is shown that reinforcing by means of FRP plates or sheets has significant beneficial effects on the behavior of reinforced concrete elements under service loadings because (1) it increases concrete tension stiffening effect and (2) it strongly reduces crack width. The present study shows that these beneficial effects are preserved also in the case of long-term loadings.  相似文献   

18.
Computational modeling of the behavior of concrete reinforced with fiber reinforced polymer (FRP) bars requires models for the constitutive behavior of concrete and FRP and a model for their interaction, bond. This study focuses upon the application of an elastoplastic bond model to represent the behavior of the type A bar experimentally examined in Part I. By fully coupling the tangent and radial response, the model is sensitive to the stress state around the bar and can induce longitudinal cracking in the adjacent concrete. The model is calibrated and then applied to predict the splitting behavior of two types of specimens. Though the two specimens differ significantly, the estimated splitting loads fall within the experimental scatter. The model is then used to obtain preliminary design data for the needed cover thickness, development length, and transfer lengths. Computational models, when calibrated with limited experimental data, allow the behavior of several different specimens to be estimated. This approach is an effective means of obtaining preliminary design data and of planning further experimental verification.  相似文献   

19.
This paper presents the results of a two-phase experimental program investigating the punching shear behavior of fiber reinforced polymer reinforced concrete (FRP RC) flat slabs with and without carbon fiber reinforced polymer (CFRP) shear reinforcement. In the first phase, problems of bond slip and crack localization were identified. Decreasing the flexural bar spacing in the second phase successfully eliminated those problems and resulted in punching shear failure of the slabs. However, CFRP shear reinforcement was found to be inefficient in enhancing significantly the slab capacity due to its brittleness. A model, which accurately predicts the punching shear capacity of FRP RC slabs without shear reinforcement, is proposed and verified. For slabs with FRP shear reinforcement, it is proposed that the concrete shear resistance is reduced, but a strain limit of 0.0045 is recommended as maximum strain for the reinforcement. Comparisons of the slab capacities with ACI 318-95, ACI 440-98, and BS 8110 punching shear code equations, modified to incorporate FRP reinforcement, show either overestimated or conservative results.  相似文献   

20.
Corrosion-induced cracks in reinforced concrete (RC) structures degrade the stiffness of the cover concrete. The stiffness degradation is mainly caused by the softening in the stress-strain relation in the cracked concrete. Limited efforts have been made to model the cracking and the corresponding effects on the cover concrete, despite of its importance in assessing and modeling the behavior of RC structures. This paper proposes a stiffness degradation factor to model the stiffness degradation of the cover concrete subject to cracking. The proposed factor is computed in terms of the cracking strain corresponding to the maximum opening of the concrete cracks based on an energy principle applied to a fractured RC structure. The time to cracking of the cover concrete is then determined as the time from the corrosion initiation needed by the crack front to reach the outer surface of the cover concrete. The proposed stiffness degradation factor and the method to compute the time to cracking are illustrated through two numerical examples. The times to cracking of the cover concrete that are predicted using the proposed method are in agreement with the measured values from laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号