首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Results from experimental testing of three permit vehicles are presented in the paper. The selected heavy vehicles, which require permits from state DOTs, included two tractor-trailer systems and a midsize crane. The vehicles were experimentally tested on popular existing speed bumps and on a representative highway bridge. The selected bridge was a reinforced-concrete structure constructed in 1999, located on the U.S. 90 in Northwest Florida. The bridge approach depression, combined with a distinct joint gap between the asphalt pavement and the concrete deck, triggered significant dynamic responses of the vehicle-bridge system. Similar dynamic vibrations were observed and recorded when the permit vehicles were driven over the speed bumps. Time histories of relative displacements, accelerations, and strains for selected locations on the vehicle-bridge system were recorded. The analysis of experimental data allowed for assessment of actual dynamic interactions between the vehicles and the speed bumps as well as dynamic load allowance factors for the selected bridge.  相似文献   

2.
3.
The objective of this paper is to present the results of an investigation of the dynamic and impact characteristics of half-through arch bridges with rough decks caused by vehicles moving across them. Seven arch bridges modeled as three-dimensional structures with overall span lengths ranging from 20?to?200?m (65.5?to?656.2?ft) are analyzed. The American Association of State Highway and Transportation Officials Specifications HS20-44 truck is the applied vehicle loading used in the analysis and is simulated as a three-dimensional, nonlinear vehicle model with 11 degrees of freedom. Truck components include the body, suspension, and tires. The bridge deck surface is assumed to have a “good” surface roughness and is simulated using a stochastic process (power spectral density function). The effect on impact factors of span length, rise-to-span ratio, and vehicle speed is discussed. The results of the analyses show that the impact factors of bending moment and axial force will not exceed 0.4 and 0.25, respectively. The proposed impact equations are simple and conservative and can be used in the design of half-through arch bridges.  相似文献   

4.
A group of five full-depth male–female shear key specimens were match cast and tested to examine the shear capacity of epoxy-jointed single keys. Another group of four specimens were match cast using full-scale dimensions of a segmental construction bridge deck system for testing the fatigue and water tightness at a segment joint. Both cold-weather and hot-weather epoxy types were used to join the specimens. In addition to the experimental testing, finite-element analysis was also used to model the static response of the joint specimens. The observed failure mode of all shear-key specimens was fracture of concrete along the joint with shearing of the key. Good agreement was observed between the experimental test results and the finite-element analysis in terms of the failure mode of unreinforced specimen and the load of crack initiation of the specimens. Fatigue loading had a minor effect on the behavior of the posttensioning bars. The contribution of either the cold-weather or hot-weather epoxies to the joint shear strength was significant knowing that for similar concrete properties, the hot-weather epoxy specimens showed an increase of about 28% in the shear capacity, in comparison to the cold-weather epoxy specimens. The excellent performance of the epoxy-jointed shear keys was verified by field application on a prototype model simulating a portion of the Wacker Drive Bridge system. It was concluded that implementing AASHTO procedures result in conservative estimates of the shear strength of the single keyed joint since it neglects the contribution of the epoxy and underestimates the strength of the key itself.  相似文献   

5.
Seismic evaluations of typical concrete girder bridges are conducted for both a multispan simply supported and a multispan continuous girder bridge common to the Central and Southeastern United States. These evaluations are performed for an approximate hazard level of 2% in 50?years by performing nonlinear time history analyses on three-dimensional analytical models. The results show significant vulnerabilities in the reinforced concrete columns, the abutments, and also in unseating of the girders. In general, the longitudinal loading of the bridges results in larger demands than the transverse loading. However, the simply supported bridge sustains bearing deformations in the transverse direction which are on the same order as their longitudinal response. These results suggest that both longitudinal and transverse loading are significant and should be considered when performing seismic hazard analyses of these bridges.  相似文献   

6.
Interaction between steel cables and concrete is complicated in prestressed concrete bridges, especially in curved prestressed concrete bridges. The most significant behavior of curved beam bridges under the loads is that, at the same time of vertical flexure, torsion occurs on the cross section, which complicates the mechanical analysis to curved beam bridges. Based on coordinating relations of steel cables and concrete (CRSC), the grillage structure finite-element method was adopted to analyze the spatial effect of curved beam bridges. This way, the effect of all prestressing procedures can be simulated properly, including the prestressing loss due to concrete shrinkage and creep, batch prestressing of the cables, etc. Furthermore, it is effective to analyze the integrated behavior of the combined steel cables space out and concrete. The efficiency and reliability of the CRSC method is demonstrated by our analysis system WXQ2.0 developed for curved-skew bridges.  相似文献   

7.
The bridge deck expansion joint is an important element in the functioning of bridge structures. When joints fail to function properly, they can create problems out of proportion to their size. Selection of a good joint for use can create fewer bridge maintenance problems. The purpose of the study was to evaluate the performance of several types of joints currently in use on Indiana highway bridges. The types of joints investigated are compression seal, strip seal, integral abutment, poured silicone, and polymer modified asphalt. The research was accomplished through questionnaire surveys, analysis of Indiana Department of Transportation roadway management data, and expert interviews. The questionnaire survey identified the problems and their causes and the merits and potential improvements of each type of joint. The analysis of Indiana roadway management data ranked the performance of different types of joints based on the deterioration rates estimated by the regression coefficients. The expert interviews investigated the practices of Indiana and its surrounding states regarding the selection and maintenance of joints. Based on the research results, several suggestions were proposed to ensure the longer service life of expansion joints.  相似文献   

8.
The simplified equations available at present to predict the collapse loads of single-cell concrete box-girder bridges with simply supported ends are based on either space truss analogy or collapse mechanisms. Experimental studies carried out by various researchers revealed that, of the two formulations available to predict the collapse load, the one based on collapse mechanisms is found to be more versatile and better suited to box sections. Under a pure bending collapse mechanism, the existing formulation is found to predict collapse load with high accuracy. However, in the presence of cross-sectional distortion, there are significant errors in the existing theoretical formulation. This paper attempts to resolve this problem, by proposing a modification to the existing theory, incorporating an empirical expression to assess the extent of corner plastic hinge formation, under distortion–bending collapse mechanism. The modified theoretical formulations are compared with the experimental results available in the literature. New sets of experiments are also conducted to validate the proposed modified theory to estimate the collapse load. In all cases, it is seen that the modified theory to predict the collapse load match very closely with the experimental results.  相似文献   

9.
A quarter scale model of a two-span RC bridge was tested using the Network for Earthquake Engineering Simulation (NEES) multiple shake table system at the University of Nevada, Reno, Nev. The project was funded through a National Science Foundation-NEES demonstration grant. The bridge system was tested from a preyield state until column failure. In depth analytical modeling was conducted to determine the effectiveness of current structural analysis software and methodology in predicting the bridge model response. Both SAP2000 v.9 and Drain-3DX were used for this purpose. Both models produced reasonable results up to column failure, however, the Drain-3DX model was determined to be most effective to predict the nonlinear bridge model response. Parametric studies were conducted to investigate optimal element discretization and integration parameters. Existing equations for pre and postyield column shear stiffness showed good correlation when compared with the measured data.  相似文献   

10.
In design practice, the transverse bending analysis of box-girder bridges is commonly done by modeling the cross section as a frame of unit width with imaginary supports at the web locations. The transverse bending moments obtained from simple frame analysis (SFA) is sometimes increased by a small percentage to accommodate the errors in modeling. In this paper, a large number of simply supported box-girder bridges have been analyzed by both SFA and three-dimensional finite element analysis for different load conditions and wheel contact areas, and the errors in SFA have been studied and quantified. The error is found to vary widely at the web-top flange junction as well as under the load (maximum sagging moment), depending on the eccentricity of loading, the wheel contact dimensions and the web-flange thickness ratio. Accordingly, a set of correction factors to the results of SFA have been proposed, which is expected to be of significant use in design practice. The use of the correction factors is demonstrated by means of two illustrative examples. The scope of the study is limited to the simplest case of a single-cell concrete box-girder bridge (simply supported with end diaphragms) without overhanging flanges.  相似文献   

11.
During earthquakes multisimple-span bridges are vulnerable to span separation at their expansion joints. A common way of preventing unseating of spans is to have cable or rod restrainers that provide connections between adjacent spans. Alternatively, dislocation of the girders can be controlled with a link slab that is the continuous portion of the bridge deck between simple spans. Seismic retrofit with link slab should be more cost-effective than the existing methods when it is performed during redecking or removal of expansion joints. Maintenance cost associated with expansion joints could also be reduced. This paper discusses the use of link slabs for retrofit of seismically deficient multisimple-span bridges with precast, prestressed concrete girders. The concept is equally applicable to bridges with steel girders. Analytical studies for typical overpasses were performed to investigate the effectiveness of the proposed link slab application. A simple preliminary design procedure was also developed.  相似文献   

12.
The current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Specifications impose fairly strict limits on the use of its live-load distribution factor for design of highway bridges. These limits include requirements for a prismatic cross section, a large span-length-to-width ratio, and a small plan curvature. Refined analyses using 3D models are required for bridges outside of these limits. These limits place severe restrictions on the routine design of bridges in California, as box-girder bridges outside of these limits are frequently constructed. This paper presents the results of a study investigating the live-load distribution characteristics of box-girder bridges and the limits imposed by the LRFD specifications. Distribution factors determined from a set of bridges with parameters outside of the LRFD limits are compared with the distribution factors suggested by the LRFD specifications. For the range of parameters investigated, results indicated that the current LRFD distribution factor formulas generally provide a conservative estimate of the design bending moment and shear force.  相似文献   

13.
Stick models are widely employed in the dynamic analysis of bridges when only approximate results are desired or when detailed models are difficult or time-consuming to construct. Although the use of stick models for regular bridges has been validated by various researchers, the application of such models to skew highway bridges continues to present challenges. The conventional single-beam stick model used to represent the bridge deck often fails to capture certain predominant vibration modes that are important in obtaining the true dynamic response of the bridge. In this paper, a refined stick model is proposed for the preliminary dynamic analysis of skew bridges. The model utilizes a dual-beam stick representation of the bridge deck. The validity of the model is established by comparing results obtained from the proposed model with numerical solutions obtained for skew plates and a skew bridge. It is shown that this dual-beam stick model is superior to the conventional single-beam model in estimating the natural vibration frequencies and in predicting the predominant vibration modes of the bridge. Because of its simplicity and relative accuracy, this model is recommended for the preliminary dynamic analysis of skew highway bridges.  相似文献   

14.
This paper describes a simple, practical, and inexpensive way of anchoring and applying the prestressing force for posttensioning of the concrete bridge superstructures. It is technically named as the lateral posttension (LPT) method. In applying the proposed new method, cable tendons are initially placed straight inside an open preformed channel or external to the cross section of the girder web. The bottom of the preformed channel is cast to match the desired final tendon profile of the prestressing path. Both ends of the tendons are embedded in the end blocks to form a dead-end anchorage system once the concrete is placed and reaches the required strength. The prestressing force is then applied by vertically deflecting the cable tendons to the prescribed profile at the bottom of the channel and locking the tendons at deflected profile. The benefits of this method lie in its simple anchorage system and easy stressing operation, thus it offers a viable posttensioning alternative. Although, further research and testing are needed before this methodology can be implemented to practice, the concept of this method opens a door for the development of a posttensioning operation that is simple, practical, and inexpensive. The accessibility for the stressing routine inspection and final adjustments makes the LPT method very useful for bridge rehabilitation and retrofit construction.  相似文献   

15.
In performance-based seismic design, general and practical seismic demand models of structures are essential. This paper proposes a general methodology to construct probabilistic demand models for reinforced concrete (RC) highway bridges with one single-column bent. The developed probabilistic models consider the dependence of the seismic demands on the ground motion characteristics and the prevailing uncertainties, including uncertainties in the structural properties, statistical uncertainties, and model errors. Probabilistic models for seismic deformation, shear, and bivariate deformation-shear demands are developed by adding correction terms to deterministic demand models currently used in practice. The correction terms remove the bias and improve the accuracy of the deterministic models, complement the deterministic models with ground motion intensity measures that are critical for determining the seismic demands, and preserve the simplicity of the deterministic models to facilitate the practical application of the proposed probabilistic models. The demand data used for developing the models are obtained from 60 representative configurations of finite-element models of RC bridges with one single-column bent subjected to a large number of representative seismic ground motions. The ground motions include near-field and ordinary records, and the soil amplification due to different soil characteristics is considered. A Bayesian updating approach and an all possible subset model selection are used to assess the unknown model parameters and select the correction terms. Combined with previously developed capacity models, the proposed seismic demand models can be used to estimate the seismic fragility of RC bridges with one single-column bent. Seismic fragility is defined as the conditional probability that the demand quantity of interest attains or exceeds a specified capacity level for given values of the earthquake intensity measures. As an application, the univariate deformation and shear fragilities and the bivariate deformation-shear fragility are assessed for an example bridge.  相似文献   

16.
A procedure for assessment of bridge expansion joints making use of long-term monitoring data is presented in this paper. Based on the measurement data of expansion joint displacement and bridge temperature, the normal correlation pattern between the effective temperature and thermal movement is first established. Alarms will be raised if a future pattern deviates from this normal pattern. With the established correlation pattern, the expansion joint displacements under the design maximum and minimum temperatures are predicted and compared with the design allowable values for validation. The extreme temperatures for a certain return period are also derived using the measurement data for design verification. Then the annual or daily-average cumulative movements experienced by expansion joints are estimated from the monitoring data for comparison with the expected values in design. Because the service life and interval for replacement of expansion joints rely to a great extent on the cumulative displacements, an accurate prediction of the cumulative displacements will provide a robust basis for determining a reasonable interval for inspection or replacement of expansion joints. The proposed procedure is applied to the assessment of expansion joints in the cable-stayed Ting Kau Bridge with the use of one-year monitoring data.  相似文献   

17.
Fuzzy logic is a means for modeling the uncertainty involved in describing an event/result using natural language. The fuzzy logic approach would be particularly useful for remedying the uncertainties and imprecision in bridge inspectors’ observations. This study explores the possibilities of using fuzzy mathematics for condition assessment and rating of bridges, developing a systematic procedure and formulations for rating existing bridges using fuzzy mathematics. Computer programs developed from formulations presented in this paper are used for evaluating the rating of existing bridges, and the details are presented in the paper. In this approach, the entire bridge has been divided into three major components—deck, superstructure, and substructure—each of which is further subdivided into a number of elements. Using fuzzy mathematics in combination with an eigenvector-based priority setting approach, the resultant rating set for the bridge has been evaluated based on the specified ratings and importance factors for all the elements of the bridge. Then the defuzzified value of the resultant rating fuzzy set becomes the rating value for the bridge as a whole. It is argued that the methodology presented in this paper would help the decision makers/bridge inspectors immensely.  相似文献   

18.
In this paper, the static and seismic performance of some short span reinforced concrete arch bridges, before and after strengthening interventions, are evaluated. To verify whether retrofit strategies for the considered arch bridges, which were designed for resisting under permanent and service actions, were adequate for earthquake resistance, seismic analyses of the as-built model of the structures have been undertaken. To account for multiple input effects on arches, induced by out-of-phase motions at foundation levels as well as different boundary conditions at structural supports, the seismic response of the structures under correlated horizontal and vertical multiple excitations is calculated. The effects on arch bridges of conventionally used uniform input and partially correlated multiple inputs with phase shifts are compared. In all cases, the results are discussed with particular reference to the influence of structural configuration, secondary systems, cross-section thickness of the arch, and retrofit interventions.  相似文献   

19.
The use of horizontally curved composite multiple-box girder bridges in modern highway systems is quite suitable in resisting torsional and warping effects induced by highway curvatures. Bridge users react adversely to vibrations of a bridge and especially where torsional modes dominate. In this paper, continuous curved composite multiple-box girder bridges are analyzed, using the finite-element method, to evaluate their natural frequencies and mode shapes. Experimental tests are conducted on two continuous twin-box girder bridge models of different curvatures to verify and substantiate the finite-element model. Empirical expressions are deduced from these results to evaluate the fundamental frequency for such bridges. The parameters considered herein are the span length, number of lanes, number of boxes, span-to-radius of curvature ratio, span-to-depth ratio, end-diaphragm thickness, number of cross bracings, and number of spans.  相似文献   

20.
The conventional design process of a launching nose of an incrementally launched bridge is based on trial-and-error methods to reduce bending moment of prestressed concrete deck at the foremost support during launch. With this method, there is no guarantee that the obtained solution is the best among all the possible solutions, since they all depend on the experience and intuition of a designer, and they are also restricted by a limited number of possible iterations. Given that launched bridges constitute an important constructive typology, all the available capacities of design innovation should be incorporated, including numerical optimization. This research work proposes an objective and rigorous formulation to optimize the launching nose of a launched bridge under real constraints that a bridge designer can encounter in practice. Comparing the results obtained by conventional process and those obtained by optimization techniques allows us to verify that some of the assumptions considered in classical design methods of a launching nose are not based on any theoretical foundation. This fact demonstrates the utility of numerical optimization to improve a design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号