首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examine here the replacement of a deteriorated concrete deck in the historic Hawthorne Street Bridge in Covington, Va. with a lightweight fiber-reinforced polymer (FRP) deck system (adhesively bonded pultruded tube and plate assembly) to increase the load rating of the bridge. To explore construction feasibility, serviceability, and durability of the proposed deck system, a two-bay section (9.45 by 6.7?m) of the bridge has been constructed and tested under different probable loading scenarios. Experimental results show that the response of the deck is linear elastic with no evidence of deterioration at service load level (HS-20). From global behavior of the bridge superstructure (experimental data and finite- element analysis), degree of composite action, and load distribution factors are determined. The lowest failure load (93.6?kips or 418.1?kN) is about 4.5 times the design load (21.3?kips or 94?kN), including dynamic allowance at HS-20. The failure mode is consistent in all loading conditions and observed to be localized under the loading patch at the top plate and top flange of the tube. In addition to global performance, local deformation behavior is also investigated using finite-element simulation. Local analysis suggests that local effects are significant and should be incorporated in design criteria. Based on parametric studies on geometric (thickness of deck components) and material variables (the degree of orthotropy in pultruded tube), a proposed framework for the sizing and material selection of cellular FRP decks is presented for future development of design guidelines for composite deck structures.  相似文献   

2.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

3.
Orthotropic plates are widely used in bridge deck systems. However, these are not commonly treated as such within design specifications, and semianalytical solutions are not presently available for all deck types. This paper develops deflection equations for infinitely wide and simply supported thin plates considering each of the three cases of orthotropy: (1)?relatively torsionally stiff, flexurally soft; (2)?uniformly thick plate; and (3)?torsionally soft, flexurally stiff; subjected to arbitrary patch loading. These are common boundary and loading conditions encountered for bridge deck applications. The reported analytical solutions enable rapid evaluation of multiple moving patch loads to determine maximum design load effects and permit validation of numerical and finite-element methods. Application of the solutions will produce guidelines that can prescribe design demands and establish practical design simplifications for treatment of different bridge deck and slab systems in a uniform and consistent manner.  相似文献   

4.
Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size structure, the Far? bridges located in Denmark, are analyzed. The steel box girders of the Far? bridges spans 80?m, and have a depth of 3.5?m, and a width of 19.5?m. The focus of the present study is the top part of the steel box girders, which is constructed as an orthotropic deck plate. Numerous factors can influence the cracking behavior of the cement-based overlay system. Both mechanical and environmental loading have to be considered, and effects such as shrinkage, temperature gradients, and traffic loading are taken into account. The performance of four overlay materials are investigated in terms of crack widths. Furthermore, the analysis shows that debonding is initiated for a certain crack width in the overlay. The load level where cracking and debonding is initiated depends on the stress-crack opening relationship of the material.  相似文献   

5.
A field load test is an essential way to understand the behavior and fundamental characteristics of newly constructed bridges before they are allowed to go into service. The results of field static load tests and numerical analyses on the Qingzhou cable-stayed bridge (605?m central span length) over the Ming River, in Fuzhou, China are presented in the paper. The general test plan, tasks, and the responses measured are described. The level of test loading is about 80–95% of the code-specified serviceability load. The measured results include the deck profile, deck and tower displacements, and stresses of steel-concrete composite deck. A full three-dimensional finite-element model is developed and calibrated to match the measured elevations of the bridge deck. A good agreement is achieved between the experimental and analytical results. It is demonstrated that the initial equilibrium configuration of the bridge plays an important role in the finite-element calculations. Both experimental and analytical results have shown that the bridge is in the elastic state under the planned test loads, which indicates that the bridge has an adequate load-carrying capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the bridge.  相似文献   

6.
The lack of safety of deck slabs in bridges generally causes frequent repair and strengthening. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of a realistic and accurate assessment system for bridge decks. The purpose of the present paper is therefore to develop a realistic assessment system which can estimate reasonably the safety, as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the traffic loads and environmental effect. A deterioration model due to chloride ingress is first established. The damage models due to repetitive traffic loads considering the dry and wet conditions of deck slabs are proposed. These models are used to calculate the remaining life of a bridge deck slab. A prediction method for service life of deck slab due to loading and environmental effects is developed based on material, as well as structural evaluation. The proposed method includes the assessment of corrosion in material level, and the analyses of flexure, shear, and fatigue in structural level. Finally, an assessment system for prediction of safety and remaining service life is developed based on the theories established in this study. The developed assessment system will allow the correct diagnosis of damage state and the realistic prediction of service life of concrete decks in girder bridges.  相似文献   

7.
Due to the orthogonal elastic properties and significant two-way bending action, orthotropic plate theory may best be used to describe the behavior of concrete filled grid bridge decks. The current AASHTO LRFD specification employs an orthotropic plate model with a single patch load to predict live load moment in concrete filled grid bridge decks, which may not be conservative. This paper presents alternative equations to predict maximum moments, based on classical orthotropic plate theory, which include multiple patch loads, both the LRFD design truck and tandem load cases, and the two most common deck orientations. The predicted moments are verified through finite-element analyses.  相似文献   

8.
Fiber-reinforced polymer (FRP) composites are increasingly being used in bridge deck applications. However, there are currently only fledgling standards to design and characterize FRP deck systems. One area that should be addressed is the loading method for the FRP deck. It has been observed that the type of loading patch greatly influences the failure mode of a cellular FRP deck. The contact pressure distribution of a real truck loading is nonuniform with more concentration near the center of the contact area as a result of the conformable contact mechanics. Conversely, the conventional rectangular steel patch on a FRP deck act like a rigid flat punch and produces stress concentration near the edges. A proposed simulated tire patch has been examined for loading a cellular FRP deck with the load distribution characterized by a pressure sensitive film sensor and three-dimensional contact analysis using ANSYS. A loading profile is proposed as a design tool for analyzing FRP deck systems for strength and durability. Local top surface strains and displacements of the cellular FRP deck are found to be higher with proposed loading profile compared to those for the conventional uniformly distributed loading. Parametric studies on the deck geometry show that the global displacement criterion used for characterizing bridge deck is inadequate for a cellular FRP deck and that the local effects must be considered.  相似文献   

9.
Innovative fiber-reinforced polymer (FRP) composite highway bridge deck systems are gradually gaining acceptance in replacing damaged/deteriorated concrete and timber decks. FRP bridge decks can be designed to meet the American Association of State Highway and Transportation Officials (AASHTO) HS-25 load requirements. Because a rather complex sub- and superstructure system is used to support the FRP deck, it is important to include the entire system in analyzing the deck behavior and performance. In this paper, we will present a finite-element analysis (FEA) that is able to consider the structural complexity of the entire bridge system and the material complexity of an FRP sandwich deck. The FEA is constructed using a two-step analysis approach. The first step is to analyze the global behavior of the entire bridge under the AASHTO HS-25 loading. The next step is to analyze the local behavior of the FRP deck with appropriate load and boundary conditions determined from the first step. For the latter, a layered FEA module is proposed to compute the internal stresses and deformations of the FRP sandwich deck. This approach produces predictions that are in good agreement with experimental measurements.  相似文献   

10.
The flexibility and low damping of the long-span suspended cables in the suspension bridges make them prone to vibrations due to wind and moving loads, which affect the dynamic response of the suspended cables and the bridge deck. This paper shows the design of two control schemes to control the nonlinear vibrations in the suspended cable and the bridge deck due to a vertical load moving on the bridge deck with a constant speed. The first control scheme is an optimal state feedback controller. The second control scheme is a robust state feedback controller, whose design is based on the design of optimal controllers. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. A vertical cable between the bridge deck and the suspended cable is used to install a hydraulic actuator able to generate the active control force on the bridge deck. The MATLAB software is used to simulate the performance of the system with the designed controllers. The simulation results indicate that the proposed controllers are capable of significantly reducing the nonlinear oscillations of the system. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller. It is found that the system with the proposed controllers can provide better performance than the system with the velocity feedback controller.  相似文献   

11.
Cables instead of interval piers support cable-stayed bridges, and the bridge deck is subjected to strong axial forces due to the horizontal components of cable reactions. The structural behavior of a bridge deck becomes nonlinear because of the axial forces, large deflection, and nonlinear behavior of the cables and the large deformation of the pylons as well as their interactions. The locations and amplitude of axial forces acting on the bridge deck may depend on the number of cables. Agrawal indicated that the maximum cable tension decreases rapidly with the increase in the number of cables. This paper investigates the stability analysis of cable-stayed bridges and considers cable-stayed bridges with geometry similar to those proposed in Agrawal's paper. A digital computer and numerical analysis are used to examine 2D finite element models of these bridges. The eigen buckling analysis has been applied to find the minimum critical loads of the cable-stayed bridges. The numerical results indicate that the total cumulative axial forces acting on the bridge girder increase as the number of cables increases, yet because the bridge deck is subjected to strong axial forces, the critical load of the bridges decreases. Increasing the number of cables may not increase the critical load on buckling analysis of this type of bridge. The fundamental critical loads increase if the ratio of Ip∕Ib increases until the ratio reaches the optimum ratio. If the ratio of Ip∕Ib is greater than the optimum ratio, depending on the geometry of an individual bridge, the fundamental critical load decreases for all the types of bridges considered in this paper. In order to make the results useful, they have been normalized and represented in graphical form.  相似文献   

12.
A new structural model for pavements on steel bridge decks (SLPE) is developed. In this model, a prism element and a strip element represent the pavement and steel bridge deck, respectively. A newly developed link element models the insulation layer that bonds the pavement to the steel deck plate. The SLPE model is verified by calculations that simulate a simply supported square plate and an actual pavement on a bridge deck. Furthermore, the model is expanded to deal with dynamic problems that consider the viscosity of asphalt materials.  相似文献   

13.
Main Roads of Western Australia has a continuing program of bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. A 40-year-old, four-span reinforced concrete slab bridge was retrofitted with application of CFRP laminate strips on the top of the deck over the piers, as well as on the deck soffit in the midspan regions, to reduce high moments in both hogging and sagging. The dynamic assessment of the bridge before and after strengthening works provided the opportunity to evaluate the effectiveness of the strengthening intervention through dynamic measurements. A performance evaluation of the repaired structure was carried out through traffic loading application on the updated numerical models of the bridge, before and after retrofit. As a main observation, the addition of CFRP laminate strips led to a significant increase of the structural capacity in flexure. The paper discusses the results obtained from the dynamic-based assessment in terms of effectiveness of the strengthening intervention as well as of efficiency in using such a methodology to evaluate the capacity increase of the retrofitted bridge.  相似文献   

14.
Computation of the dynamic stress of long suspension bridges under multiloadings is essential for either the strength or fatigue assessment of the bridge. This paper presents a framework for dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings. The bridge, trains, and road vehicles are respectively modeled using the finite-element method (FEM). The connections between the bridge and trains and between the bridge and road vehicles are respectively considered in terms of wheel-rail and tire-road surface contact conditions. The spatial distributions of both buffeting forces and self-excited forces over the bridge deck surface are considered. The Tsing Ma suspension bridge and the field measurement data recorded by a wind and structural health monitoring system (WASHMS) installed in the bridge are utilized as a case study to examine the proposed framework. The information on the concerned loadings measured by the WASHMS is taken as inputs for the computation simulation, and the computed stress responses are compared with the measured ones. The results show that running trains play a predominant role in bridge stress responses compared with running road vehicles and fluctuating wind loading.  相似文献   

15.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

16.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

17.
The design and construction of bridge systems with long-term durability and low maintenance requirements is a significant challenge for bridge engineers. One possible solution to this challenge could be through the use of new materials, e.g., fiber-reinforced polymer (FRP) composites, with traditional materials that are arranged as an innovative hybrid structural system where the FRP serves as a load-carrying constituent and a protective cover for the concrete. This paper presents the results of an experimental investigation designed to evaluate the performance of a 3/4 scale hybrid FRP-concrete (HFRPC) bridge deck and composite connection under sustained and repeated (fatigue) loading. In addition, following the sustained-load and fatigue portions of the experimental study, destructive testing was performed to determine the first strength-based limit state of the hybrid deck. Results from the sustained-load and fatigue testing suggest that the HFRPC deck system might be a viable alternative to traditional cast-in-place reinforced concrete decks showing no global creep behavior and no degradation in stiffness or composite action between the deck and steel girders after 2 million cycles of dynamic loading with a peak load of 1.26 times the scaled tandem load (TL). Furthermore, the ultimate strength test showed that the deck failed prior to the global superstructure at a load approximately six times the scaled TL.  相似文献   

18.
K?mürhan Highway Bridge is a reinforced concrete box girder bridge located on the 51st km of Elaz??–Malatya Highway over the F?rat River. Because of the fact that the K?mürhan Bridge is the only bridge in this part of F?rat, it has major logistical importance. So, this paper aims to determine dynamic characteristics such as natural frequencies, mode shapes, and damping ratios of the bridge using experimental measurements and finite-element analyses to evaluate current behavior. The experimental measurements are carried out by ambient vibration tests under traffic loads. Due to the expansion joint in the middle of the bridge, special measurement points are selected and experimental test setups are constituted. Vibration data are gathered from the both box girder and bridge deck. Measurement time, frequency span, and effective mode number are determined by considering similar studies and literature. The peak picking method in the frequency domain is used for the output-only modal identification. An analytical modal analysis is performed on the developed two- and three-dimensional finite-element model of the bridge using SAP2000 software to provide the analytical frequencies and mode shapes. At the end of the study, dynamic characteristics of the Elaz?? and Malatya parts of the bridge obtained from the experimental measurements are compared with each other and transverse effects on the bridge are determined. Also, experimental and analytical dynamic characteristics are compared. Good agreement is found between dynamic characteristics in the all measurement test setups performed on the box girder and bridge deck and analytical modal analyses.  相似文献   

19.
The MD 24 Bridge over Deer Creek in Harford County, Md., was one of the projects chosen by the Federal Highway Administration’s Innovative Bridge Research and Construction Program for bridge deck replacement by fiber-reinforced polymer (FRP) composites. A thorough discussion is presented on Maryland State Highway Administration’s first bridge rehabilitation project utilizing a FRP deck. The discussion includes design details, installation procedure, construction methods and in situ load testing with a wireless monitoring system. The research team installed a monitoring system to record the effects of live loads on the bridge system, including truss members, steel stringers, and plate action of the FRP deck. Finite-element models were also used in this phase. Dynamic effects of the FRP system, composite action between steel stringers and the FRP deck as well as the effective width and distribution factors of stringers were obtained and compared with the AASHTO specifications. Recommendations are also offered on improving the design details based on this experience.  相似文献   

20.
Fiber-reinforced polymers (FRP) are becoming more widely used for repair and strengthening of conventionally reinforced concrete (RC) bridge members. Once repaired, the member may be exposed to millions of load cycles during its service life. The anticipated life of FRP repairs for shear strengthening of bridge members under repeated service loads is uncertain. Field and laboratory tests of FRP-repaired RC deck girders were performed to evaluate high-cycle fatigue behavior. An in-service 1950s vintage RC deck-girder bridge repaired with externally bonded carbon fiber laminates for shear strengthening was inspected and instrumented, and FRP strain data were collected under ambient traffic conditions. In addition, three full-size girder specimens repaired with bonded carbon fiber laminate for shear strengthening were tested in the laboratory under repeated loads and compared with two unfatigued specimens. Results indicated relatively small in situ FRP strains, laboratory fatigue loading produced localized debonding along the FRP termination locations at the stem-deck interface, and the fatigue loading did not significantly alter the ultimate shear capacity of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号