首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The melting and crystallization behavior of poly(β-hydroxybutyrate) (PHB) and poly(ethylene succinate) blends has been studied by differential scanning calorimetry and optical microscopy. The results indicate that PHB and PES are miscible in the melt. Consequently the blend exhibits a depression of the melting temperature of both PHB and PES. In addition, a depression of the equilibrium melting temperature of PHB is observed. The Flory-Huggins interaction parameter (χ12 ), obtained from melting point depression data, is composition dependent, and its value is always negative. Isothermal crystallization in the miscible blend system PES/PHB is examined by polarized optical microscope. The presence of the PES component gives a wide variety of morphologies. The spherulites exhibit a banded structure and the band spacing decreases with increase PES content. Received: 29 June 1998/Revised version: 31 August 1998/Accepted: 10 September 1998  相似文献   

2.
Summary Rheological properties of poly(-caprolactone) (PCL) and Poly (styrene-co-acrylonitrile) (SAN) blends were examined as a function of the acrylonitrile (AN) content in SAN, to systematically understand the correlation between the interaction parameter and the theological properties of miscible polymer blends. When the plateau modulus (G N 0) and zero shear viscosity ( 0) of the PCL/SAN blends are plotted against the AN content in SAN, a minimum is observed. Qualitatively, the results obtained parallel the variation of the interchain interaction with the AN content. The negative deviation ofG N 0 and 0 from linearity seems to be attributed to the increase in the entanglement molecular weight between dissimilar chains which results from the chain extension caused by interchain interaction.  相似文献   

3.
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2.  相似文献   

4.
The oxidative degradation of the poly (ε-caprolactone) (PCL), poly (vinyl acetate) (PVAC) and their mixtures in dichlorobenzene has been investigated at various temperatures (70-130°C) in the presence of benzoyl peroxide. The interaction between the polymers is quantified by monitoring the molecular weights of individual polymers using gel-permeation chromatography. The various physical mixtures employed in the present investigation are , and wt%/wt% PCL/PVAC. Experimental data indicated that the degradation is random without cross-linking and repolymerization. An optimum in degradation temperature (corresponding to maximum degradation rate) of 105°C was observed for the entire range of polymer compositions (0-100% PCL) investigated. This optimum temperature of degradation is characteristic mostly of the initiator and only to a small extent of the degrading polymer system. The experimental results of the mixtures indicated that the degradation rates of PVAC are significantly enhanced, while the degradation rates of PCL are decreased in the physical mixture. This can be attributed to the proton-accepting and proton-donating nature of PCL and PVAC, respectively. A radical mechanism for the oxidative degradation of pure polymers and their mixtures has been proposed and a model based on continuous distribution kinetics was developed considering the interaction of the polymers through hydrogen abstraction and the parameters were evaluated numerically. The activation energies for the peroxide attack for the PCL and PVAC are 10.5 and , respectively. The activation energies for the random chain scission of PCL and PVAC are 10.6 and , respectively.  相似文献   

5.
Hydrogels of semi-interpenetrating networks composed of poly(acrylamide) (PAAm) and poly(γ-glutamic acid) (γ-PGA) with different proportions were studied as potential amoxicillin controlled-release devices. The effects of the hydrogels composition, pH, and temperature on the kinetics and final release of amoxicillin were determined in batch experiments. The release kinetic tests were conducted using a buffer solution as the release medium under pH conditions of 3 and 7.2, and temperature of 25, 37, and 45 °C. The final percentage of amoxicillin released from the hydrogels was found to increase with temperature, pH, and the amount of γ-PGA in the hydrogels formulation. Overall, equilibrium conditions in the kinetics experiments were achieved within 240 min of hydrogel–solution contact. The overall rate of amoxicillin release was represented with a two-parameter empirical model as a function of time.  相似文献   

6.
Ethyl 3-(4-(hydroxymethyl)piperidin-1-yl)propanoate (EHMPP) was prepared in quantitative yield under mild conditions via Michael addition reaction of 4-piperidinemethanol with ethyl acrylate. EHMPP underwent condensation polymerization in the presence of a lipase catalyst (CALB) to form poly[3-(4-(methylene)piperidin-1-yl)propanoate] (poly(MPP) or PMPP). Ring-opening and condensation copolymerization of EHMPP with ω-pentadecalactone (PDL) led to the synthesis of novel poly(PDL-co-MPP) copolymers, whose compositions were readily controlled by varying the monomer feed ratio. NMR analyses, including statistical analysis on repeating unit sequence distribution, indicate that the copolymers are totally random polymers. TGA analysis revealed that the degradation temperature of PMPP is approximately 160 °C lower than that of PPDL and that all poly(PDL-co-MPP) copolymers degrade in two well defined weight loss steps attributable to thermal degradation of MPP and PDL unit fractions in the polymers. The crystallinity of the polymers was studied by DSC analysis. Although PMPP and the copolymers rich in MPP units do not easily crystallize upon cooling from melt, the homopolymer and all copolymers obtained via precipitation from solution are semi-crystalline materials. WAXS analysis showed that the copolymers rich in PDL (≥51 mol%) crystallize in PPDL lattice and those with ≤21 mol% PDL content develop PMPP-type crystals while in the copolymer with 36 mol% PDL, PMPP-type and PPDL-type crystals co-exist. PMPP and poly(PDL-co-MPP) represent a new type of biodegradable poly(β–amino esters) that are potentially useful biomaterials for specific biomedical applications (e.g., gene delivery).  相似文献   

7.
Abstract

The mechanical properties of blends of poly (vinyl chloride) (PVC) and poly (styrene-block-(ethylene-co-butadiene)-block–styrene) (SEBS) were investigated using maleic anhydride grafted SEBS (SEBS-g-MAH) as a compatibiliser. The results indicated that addition of a small amount of SEBS-g-MAH during melt blending significantly improved the mechanical properties of PVC/SEBS blends. The impact strength of the compatibilised PVC/SEBS blends was found to reach a maximum of 53·5±2·78 KJ m?2 at room temperature and a maximum of 32·8±1·66 KJ m?2 at ?20°C at an SEBS-g-MAH loading level of 6 phr. The two glass transition temperatures of the components in the blends converged to some degree upon addition of SEBS-g-MAH for compatibilisation. At room temperature the dynamic storage modulus of the compatibilised blends was higher than that of the blends without compatibilisation. The size of the dispersed phase domains in the blends was appreciably reduced on addition of SEBS-g-MAH during melt blending according to scanning electron microscopy. All the above observations revealed that SEBS-g-MAH enhanced the compatibility between PVC and SEBS in the PVC/SEBS blends.  相似文献   

8.
A series of amphiphilic graft copolymers PEO-g-PCL with different poly (ε-caprolactone) (PCL) molecular weight were successfully synthesized by a combination of anionic ring-opening polymerization (AROP) and coordination-insertion ring-opening polymerization. The linear PEO was produced by AROP of ethylene oxide (EO) and ethoxyethyl glycidyl ether initiated by 2-(2-methoxyethoxy) ethoxide potassium, and the hydroxyl groups on the backbone were deprotected after hydrolysis. The ring-opening polymerization of CL was initiated using the linear poly (ethylene oxide) (PEO) with hydroxyl group on repeated monomer as macroinitiator and Sn(Oct)2 as catalyst, then amphiphilic graft copolymers PEO-g-PCL were obtained. By changing the ratio of monomer and macroinitiator, a series of PEO-g-PCL with well-defined structure, molecular weight control, and narrow molecular weight distribution were prepared. The expected intermediates and final products were confirmed by 1H NMR and GPC analyzes. In addition, these amphiphilic graft copolymers could form spherical aggregates in aqueous solution by self-assemble, which were characterized by transmission electron microscopy, and the critical micelle concentration values of graft copolymers PEO-g-PCL were also examined in this article.  相似文献   

9.
Nishar Hameed 《Polymer》2008,49(24):5268-5275
Nanostructured poly(?-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.  相似文献   

10.
Summary The miscibility behaviour of sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) of the different degree of sulfonylation blended with poly(styrene-co-maleic anhydride) or poly(-methylstyrene-co-maleic anhydride) was studied. The critical degree of sulfonylation for phase separation in these blends was found to be 55 mole % and 66 mole %, respectively. The miscibility behaviour was analyzed on the basis of the mean field treatment and studied by DSC.Dedicated to Professor Dragutin Fle in honor of his 70th birthday  相似文献   

11.
High molecular weight di- and triblock copolymers of poly(l-lactide), PLLA, (80 wt%) with a crystallizable flexible second component such as poly(ε-caprolactone), PCL, or poly(oxyethylene), PEO, (20 wt%) were obtained in nearly quantitative yields by ring opening of l-lactide initiated by PCL or PEO hydroxy terminated macromers. The copolymers were characterized by 1H NMR and FTIR spectroscopy and size exclusion chromatography and showed unimodal and narrow molecular weight distributions. X-ray diffraction measurements revealed high crystallinity (38-56%) of the PLLA blocks and gave no clear evidences of PCL or PEO crystallinity. DMTA and DSC techniques showed a melting behaviour of the copolymers (Tm=174-175 °C; ΔHm=19-37 J/g) quite similar to that of PLLA. PCL and PLLA segments are immiscible, while PLLA and PEO segments are partially miscible in the amorphous phase. Stress-strain measurements indicated a ductile behaviour of the copolymers, characterized by lower tensile moduli (225-961 Pa) and higher elongations at break (25-134%) with respect to PLLA.  相似文献   

12.
In this study, novel ABA-type amphiphilic copolymers consisting of poly(citric acid) (PCA) (A) as hydrophilic segment and poly(ε-caprolactone) (PCL) (B) as hydrophobic block were prepared by an approach in the following two steps: (1) ring-opening polymerization (ROP) of ε-caprolactone with 1,5-pentanediol initiator to obtain a hydroxyl telechelic PCL; (2) melt polycondensation reaction of hydroxyl telechelic PCL and citric acid molecules. The prepared copolymers are capable of self-assembling into nanosized micelles in aqueous solution. The influence of the copolymer composition on the micelle dimensions was investigated. The critical micellar concentration of the copolymers is in the range of 5–6.3 × 10?2 mg/mL which is determined by the fluorescence probe technique using pyrene. Also the results indicate that CMC of self assembled micelles is influenced by the hydrophilicity of PCA–PCL–PCA copolymers depending on the CA/CP ratio, and these micelles may find great potential as drug carriers in biomedical fields.  相似文献   

13.
Summary Poly(styrene-co-vinyl phenol) (STVPh)/poly(-caprolactone)(PCL) blends showed enhanced miscibility over polystyrene/PCL blend, and showed single glass transition temperature when the contents of vinyl phenol (VPh) in copolymer were higher than 10 wt % (maximum content of VPh in STVPh used in this study was 20 wt%). STVPh 4, STVPh 7, STVPh 10 (4, 7, 10 were VPh wt%)/PCL blends showed cloud points on heating for miscible blend system, and this phase separation was reversible on cooling. From melting point depression of PCL, interaction parameter, B. for miscible STVPh 12/PCL blend system was evaluated.  相似文献   

14.
Summary The water soluble poly(-glutamic acid) (-PGA) was synthetized by bacteria. A series of new, less water soluble -esters were prepared by repeated esterification.The characterization of the resulted polymers was performed by 200 MHz 1H and 75.4 MHz 13C NMR spectroscopy.  相似文献   

15.
New amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) (PNVCL-b-PCL) block copolymers were synthesized by ring-opening polymerization of ε-caprolactone with hydroxy-terminated poly(N-vinylcaprolactam) (PNVCL-OH) as a macroinitiator. The structures of the polymers were confirmed by IR, 1H NMR and GPC. The critical micelle concentrations of copolymer in aqueous solution measured by the fluorescence probe technique reduced with the increasing of the proportion of hydrophobic parts, so did the diameter and distribution of the micelles determined by dynamic light scattering. The shape observed by transmission electron microscopy (TEM) demonstrated that the micelles are spherical. On the other hand, the UV–vis measurement showed that polymers exhibit a reproducible temperature-responsive behavior with a lower critical solution temperature (LCST). The LCST of PNVCL-OH can be adjusted by controlling the molecular weights, and that of copolymers can be adjusted by controlling the compositions and the concentration. Variable temperature TEM measurements demonstrated that LCST transition was the result of transition of individual micelles to larger aggregates.  相似文献   

16.
Poly(vinyl chloride)/poly(ε-caprolactone)/poly(ε-caprolactone)-b-poly(dimethylsiloxane) [PVC/PCL/(PCL-b-PDMS)] blends were prepared by solvent casting from tetrahydrofuran. The content of PVC was kept constant (60 wt%); the PCL and PCL-b-PDMS contents were varied by replacing different amounts of PCL [0–20 wt% from the PVC/PCL (60/40) blend] with PCL-b-PDMS copolymer having different molecular weights of the PCL blocks. The thermal properties of prepared blends were investigated by differential scanning calorimetry in order to analyse miscibility (through glass transition temperature) and crystallinity. Differential scanning calorimetry analyses show that the PVC/PCL/PCL-b-PDMS blends are multi-phase materials which contain a PVC plasticized with PCL phase, a block copolymer PCL-b-PDMS phase (with crystalline and amorphous PCL and PDMS domains) and a PCL phase (preponderantly crystalline).  相似文献   

17.
Summary The electrochemical properties of poly(4,4-diphenylamine methylenes) and poly(4,4-diphenylimine methines) were investigated by cyclic voltammetry. A dehydrogenation reaction occured when poly(4,4-diphenylamine methylenes) underwent a electrochemical reaction and transformed to poly(4,4-diphenylimine methines). The fully oxidized poly(4,4-diphenylimine methines) had the electrochemical band gaps of 1.60–1.72 eV, which were found to significantly smaller than those of the fully reduced poly(4,4-diphenylamine methylenes).  相似文献   

18.
Novel nanocomposite films based on poly(ethylene-co-acrylic acid) (PEAA) and zinc montmorillonite (Zn2+–MMT) were fabricated using a solution casting method with water as the solvent. Transmission electron microscopy indicated that Zn2+–MMT was distributed finely in the PEAA matrix. X-ray diffraction indicated that an ion exchange process occurs between Zn2+–MMT and PEAA. The nanocomposites filled with a low Zn2+–MMT loading increased the tensile strength and elongation at break. The significant improvements in these mechanical properties were attributed to the fine dispersion of Zn2+–MMT in the polymer and the covalent interaction between the polymer chains and Zn2+ cations. Thermogravimetric analysis and differential thermal calorimetry confirmed that PEAA formed a network through the presence of Zn2+ cations. A poly(ethylene-co-acrylic acid) zinc salt (PEAAZn) film by hot pressing was introduced for comparison. Zn2+–MMT improved the mechanical properties of the PEAA significantly compared to that of PEAAZn.  相似文献   

19.
The synthesis, EPR characterisation and biological evaluation of two new metallodendrimers, i.e. a poly(propyleneamine) dendrimer functionalized at the external surface with 4-bromo-1,8-naphthalimide and conjugated with Cu(II) and Zn(II), was performed with the aim to evaluate their antimicrobial and anticancer activity. The antimicrobial activity was investigated in meat-peptone broth against bacteria B. subtilis and P. aeruginosa, and the yeast C. lipolytica. The results showed that the compounds inhibited effectively the tested pathogens even after their deposition on a textile fabric. Anticancer activity was investigated against three human permanent cell lines from non-small cell lung cancer (A549), triple negative breast cancer (MDA-MB-231) and carcinoma of the uterine cervix (HeLa) in the c?=?0.01–30 μM concentration range. The results suggest that these compounds are promising for application in biomedicine as anticancer drugs in the design of new effective preparations. The antimicrobial and anticancer activity may be related to the peculiar structural and dynamical properties revealed for the Cu(II) complexes, by a computer aided analysis of the electron paramagnetic resonance (EPR) spectra. This analysis indicated the formation, at the lowest Cu(II) concentrations, of a flexible rhombic Cu-N4 coordination with the internal amino groups of the dendrimer, which transformed into a Cu2-N4 coordination already at 0.25 equiv. of Cu(II).  相似文献   

20.
Young Gyu Jeong  Won Ho Jo 《Polymer》2008,49(6):1693-1700
It was revealed that poly(octamethylene 2,6-naphthalate) (PON) existed in two different crystal structures, α- and β-form, depending on crystallization process: The α-form crystal was dominantly developed from the cold-crystallization, whereas the β-form was from the melt-crystallization. The apparent melting temperatures of α- and β-form crystals were characterized to be 175 and 183 °C, respectively. On the basis of X-ray diffraction and molecular modeling studies, the crystal structure of β-form, developed dominantly from the melt-crystallization, was identified to be triclinic with dimensions of a = 0.601 nm, b = 1.069 nm, c = 2.068 nm, α = 155.68°, β = 123.25°, γ = 52.85°, and with the space group of . The calculated crystal density was 1.243 g/cm3, supporting that one repeating unit of PON exists in a unit cell. The octamethylene units in the PON backbone take largely all-trans conformation in the β-form unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号