首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a method to modify the surface of graphene oxide (GO) by grafting polymer chains using nitroxide mediated radical polymerization (NMRP). Surface modification by NMRP was achieved using GO functionalized with 2,2,6,6-tetramethyl-piperidine 1-oxyl (TEMPO, T) to produce graphene oxide-TEMPO (GO-T). GO prepared from graphite by the Hummer's method was facilely functionalized in one step with T. Graft polymerization reactions of styrene and isoprene were carried out using nitroxide chemistry to control the polymerization and the ‘grafting from the surface’ polymerization technique. GO-T acts as a multifunctional macroalkoxyamine initiating and controlling the polymerization in the presence of monomer. The grafting reactions were performed by dispersing GO-T in dimethylformamide and heating at 130 °C in the presence of monomer to form graphene oxide-g-polystyrene-TEMPO (GO-g-PS-T) and graphene oxide-g-polyisoprene-TEMPO (GO-g-PI-T). FT-IR, Raman, XPS, XRD, TGA and TEM data are consistent with the attachment of the TEMPO group to the GO surface and with polystyrene and polyisoprene being grafted onto the GO surface. The amount of PS and PI grafted to GO-T was estimated from TGA data to be approximately 34% for a 7 h reaction time and 68% for a 144 h reaction time, respectively.  相似文献   

2.
A mathematical model has been developed to describe the behavior of the nitroxide-mediated miniemulsion polymerization (NMMP) of styrene initiated by alkoxyamine initiators. The model includes mechanisms describing reactions in the aqueous and organic phases, particle nucleation, the entry and exit of oligomeric radicals, and the partitioning of nitroxide and styrene between the aqueous and organic phases. The influence of nitroxide partitioning on the polymerization kinetics was examined by modeling systems initiated by the alkoxyamines BST and hydroxyl-BST; BST and hydroxyl-BST are benzoylstyryl radicals terminated by the nitroxides TEMPO and 4-hydroxyl-TEMPO, respectively.Predicted monomer conversions, number average molecular weights and polydispersities were in agreement with experimentally measured values. Simulations and mathematical analysis showed that the rate of styrene NMMP is not strongly influenced by the partitioning properties of TEMPO and 4-hydroxyl-TEMPO because of the complex interaction between reaction equilibrium, phase equilibrium, termination and thermal initiation. However, in the absence of styrene thermal initiation, nitroxide partitioning was found to have a significant influence on the polymerization kinetics. The model was also used to make quantitative estimates of: the population of active and dormant polymer radicals derived from both alkoxyamine initiators and thermal initiation; the population of dead polymer chains; and the number molecular weight distributions of living and dead polymer chains.  相似文献   

3.
Julien Parvole 《Polymer》2006,47(4):972-981
The method of formation of well-defined polymer brushes based on the nitroxide mediated polymerization (NMP) of n-butyl acrylate (BA) initiated from a self-assembled mono-layers (SAMs) of an azoic initiator in the presence of a stable nitroxide radical is described. After preliminary qualitative characterization by X-ray photoelectron spectroscopy, the samples were studied by ellipsometry in order to determine the dry film thickness (initiator and polymer) and the grafting density of macromolecular chains. It is demonstrated, that in the presence of stable counter radical SG1, acting as chain growth moderator, the surface initiated NMP exhibits a living/controlled character permitting to control architectural parameters (e.g. degree of polymerization) of elastomer grafted polymer chains. The possibility to use the living control character of this type of polymerization to re-initiate grafted chains in order to increase the thickness of an elastomer thin film with conservation of the brushes regime has been demonstrated.  相似文献   

4.
5.
Recently we have constructed a mechanistic model describing the nitroxide mediated miniemulsion polymerization (NMMP) of styrene at 135°C, using alkoxyamine initiators to control polymer growth (Nitroxide-Mediated Polymerization of Styrene in Miniemulsion. Modeling Studies of Alkoxyamine-Initiated Systems, 2001b). The model has since been expanded to describe styrene NMMP at 135°C using TEMPO and the free radical initiator, potassium persulfate (KPS). The model includes mechanisms describing reactions in the aqueous and organic phases, particle nucleation, the entry and exit of oligomeric radicals, and the partitioning of nitroxide and styrene between the aqueous and organic phases. Predicted monomer conversions, number average molecular weights and polydispersities were in agreement with experimentally measured values. Model simulations revealed that for systems employing high ratios of TEMPO:KPS, the consumption of TEMPO by polymer radicals derived from KPS decomposition and styrene thermal initiation (using the accepted literature kinetic rates) is not sufficient to lower TEMPO concentrations to levels where polymer growth can occur. By accounting for the consumption of TEMPO by acid-catalyzed disproportionation, TEMPO concentrations are significantly reduced, allowing for accurate model predictions of monomer conversion, number average molecular weight and polydispersity at every experimental condition considered.  相似文献   

6.
One-phase microemulsion regions at 25 and 60 °C and the polymerization at 60 °C in o/w microemulsion formed by 1,3-butadiene, water, and a mixture of the surfactants, dodecyltrimethylammonium bromide, and didodecyldimethylamonium bromide (3/1 w/w), are reported. The polybutadienes obtained here have similar characteristics to those of their homologous obtained by emulsion polymerization, with the only difference that the average particle size of the former (25–30 nm) was smaller by an order of magnitude. The obtained polymer had high average molecular weights, but the gel content at high conversion is lower than the value for a conventional emulsion polymerization. The DSC measurements showed that the polymer has a single glass transition temperature at −72.5 ± 1.5 °C.  相似文献   

7.
We report synthesis of colloids with polymer core and inorganic shell consisting of silver nanoparticles (AgNPs) which can be used as building blocks for the preparation of conducting composite films. Polymer colloids based on copolymer of styrene and butyl acrylate with variable film formation temperature and functional surface have been prepared by surfactant-free emulsion polymerization. Polymer particles with average size between 140 nm and 220 nm and narrow size distribution were used as templates for deposition of AgNPs by microwave-assisted reduction of silver precursors in aqueous medium. The loading of the AgNPs on the polymer particle surface has been increased up to 60 wt.-%. Obtained hybrid colloids were used for preparation of composite films. The electrical conductivity of the composite films starts to increase if the AgNPs loading on the polymer particle surface is above 20 wt.-%.  相似文献   

8.
Styrenated oil was obtained by nitroxide mediated radical polymerization (NMRP) method in the presence of 2,2′,6,6′-tetramethylpiperidinyl-1-oxy (TEMPO). For this purpose, firstly, macroinitiator having thermally unstable azo groups was obtained with reaction of partial glycerides (PGs) mixture and 4,4′-azobis-4-cyanopentanoyl chloride (ACPC). Then, the macroinitiator was subjected to polymerization with styrene in the presence of TEMPO in order to obtain a copolymer with controlled structure and low polydispersity. The products thus obtained were characterized by GPC, 1H NMR and FT-IR measurements. A classical styrenated oil was also prepared for comparison. The film properties of the products were determined according to the related standards and compared with each other. The product obtained at the end of the 72 h in the presence of TEMPO showed to some extent brittle film properties. To improve the film properties, this product was further reacted with the oil-based vinyl macromonomer (MM). The styrenated oil samples prepared by the controlled polymerization method, exhibited relatively low polydispersity (<1.5) and showed good film properties.  相似文献   

9.
Colloidal Unimolecular Polymer, CUP, particles were synthesized and characterized as a potential new and useful spheroidal polymer conformation for a variety of applications. Also known as single chain nanoparticles, these nanomaterials are gaining in popularity. The route to CUP particle formation is an innovative approach utilizing a small number of hydrophilic groups along a hydrophobic polymer backbone which transitions from a random coil conformation in organic solvent to a hard sphere in water through a slow gradient with subsequent solvent removal. The CUP particles have diameters which are proportional to their molecular weights and range typically from 3 nm to over 9 nm. These CUP particles were stable in water and free of solvent or surfactants. The sodium or potassium salts of CUP particles are spheroidal and are able to be dried then re-dissolved in water with no aggregation, unlike the original polymer. The diameters of the CUP particles correlate with the absolute number average molecular weight (Mn) and distributions from the GPC. Molecular weights from 28K to 122K are reported here and are based on an acrylic copolymer having a molar ratio of 9:1 MMA:MAA.  相似文献   

10.
Janus particles have attracted increasing attention from the communities of materials science, chemistry, physics and biology. While large size Janus particles are readily achieved, synthesizing Janus nanoparticles (JNP) with diameters smaller than ∼20 nm remains a challenging task. In this article, we report a systematic study on growing polymer brushes on polymer-single-crystal-immobilized 6 and 15 nm diameter gold nanoparticles (AuNPs) using atom transfer radical polymerization. JNPs with bicompartment polymer brushes, such as poly(ethylene oxide) (PEO)/poly(methyl methacrylate), PEO/poly(tert-butyl acrylate), and PEO/poly(acrylic acid), were synthesized. The grafting densities can be carefully controlled. The Janus feature of these particles was confirmed using both platinum nanoparticle decoration and UV/Vis spectroscopy analysis. The surface plasmon resonance absorbance of Janus particles exhibited a blue shift compared with that of symmetric AuNPs with either homopolymer or mixed polymer brushes. This work demonstrated that using polymer single crystal as the templates, small size (<20 nm diameter) JNPs having bicompartment polymer brushes can be readily obtained. The ability to tune grafting density and molecular weight of polymer brushes can lead to controlled particle amphiphilicity.  相似文献   

11.
Three random and three block copolymers of methyl methacrylate (MMA) and octadecyl acrylate (ODA) were synthesized by atom transfer radical polymerization. These copolymers were assessed for their application as stabilizers in the one-step non-aqueous dispersion (NAD) polymerization of MMA and of acrylonitrile (AN) in a non-polar solvent mixture of hexane and dodecane. In all cases stable spherical micro-particle colloidal dispersions were formed with particle diameters in the range of 62-2725 nm for PMMA. Uniform monodisperse PMMA particles with standard deviations in size distributions of less than 5% were obtained in two cases demonstrating the utility of ODA:MMA copolymers as replacement preformed stabilizers in the one-step synthesis of MMA micro-spheres. Overall the block copolymer PMMA64-block-PODA36 gave greater control over size when varying the solvent:monomer ration than a related gradient PMMA-PODA copolymer. These copolymers were further used as stabilizers in the one-step NAD polymerization of MMA with ethylene glycol dimethacrylate (EGDMA) under similar conditions allowing for the preparation of monodisperse cross-linked PMMA particles with diameters ranging from 110 to 1700 nm. The general utility of the copolymers as stabilizers was demonstrated by the NAD polymerization of acrylonitrile (AN) in non-polar solvent mixture of hexane and dodecane giving ‘crumpled’ latex dispersions with particle diameters in the range 85-483 nm.  相似文献   

12.
A pentadentate salen-type ligand was immobilized in a poly[(styrene)]-co-(butyl acrylate)] matrix by miniemulsion polymerization. The obtained polymer beads revealed a particle size of 50 nm in the dry state by transmission electron microscopy. Dynamic light scattering experiments in methanol and water showed a solvent-dependent average particle size with a mean particle diameter of up to 233 nm in methanol. These results provide valuable insights for the optimization of macromolecular oxidation catalysts and their future use as enzyme-like entities in aqueous media. The particle stability was demonstrated over a wide pH range (3-11) by gel permeation chromatography, and initial results for the metal ion binding ability were obtained.  相似文献   

13.
Carboxylated styrene-butadiene rubber (XSBR) latexes were prepared by emulsifier-free batch emulsion copolymerization of styrene and butadiene with different types of carboxylic acid monomers (AA, MAA, IA). It was found that the particle growth is dependent on the hydrophilic nature of carboxylic acid monomers. SEM studies showed that Np is almost constant in the particle growth stage (conversion above 10%). Through some calculations by data obtained from DLS technique, average diameter of monomer swollen polymer particles of all the XSBR latexes at the same conversion of 0.4 was obtained to be 368.91, 174.17 and 437.15 nm for AA, MAA and IA, respectively. Several kinetic parameters related to the particle growth stage such as the average number of growing chain per particle were calculated to be 0.474, 0.370 and 1.685 for AA, MAA and IA, respectively. It was observed that these kinetic parameters increase with increasing average diameter of monomer swollen polymer particles, which is consistent with the emulsion polymerization kinetics. Moreover, results indicated that the polymerization rate per particle or equivalently the average number of the growing chain per particle (particle growth stage) decreases by replacing a part of styrene with butadiene in the emulsion copolymerization recipe of styrene-carboxylic acid monomer.  相似文献   

14.
Md. Nur Alam 《Polymer》2008,49(16):3428-3435
The control/livingness in nitroxide-mediated polymerization of styrene (S) in aqueous miniemulsion at 125 °C employing a poly(S)-2,2,6,6-tetramethylpiperidinyl-1-oxy (PS-TEMPO) macroinitiator and the surfactant sodium dodecylbenzenesulfonate has been shown to depend strongly on the macroinitiator concentration for particles of approximate number-average diameter 65 nm. The control/livingness was relatively poor at [PS-TEMPO]0 ≤ 0.02 M due to the combined effect of enhanced spontaneous initiation and the interface effect (whereby deactivation is suppressed due to interfacial activity of TEMPO). Satisfactory control/livingness was obtained at higher [PS-TEMPO]0 as a result of the interface effect and enhanced spontaneous initiation exerting less pronounced influence per chain than at lower [PS-TEMPO]0. Polymerizations using the sulfonate surfactant DOWFAX 8390 gave similar results, indicating that the present macroinitiator concentration effects are not specific to SDBS-based systems. The results also demonstrate that TEMPO-mediated polymerization of S in miniemulsion can proceed at a higher rate than in bulk with good control/livingness.  相似文献   

15.
Thermosensitive core–shell nanoparticles were synthesized by semicontinuous heterophase polymerization of styrene, followed by a seeded polymerization for forming a shell of poly(N-isopropyl acrylamide) (PNIPAM). Nanoparticles characterization by scanning transmission electronic microscopy showed core–shell morphology with average particle diameters around 40 nm. An inverse dependence of the particle size with temperature in the range 20–55 °C was identified by quasielastic light scattering measurements. As was expected for core–shell particles with PNIPAM as the shell, a volume phase transition near 32 °C was detected. In spite of thermosensitive properties of core–shell nanoparticles synthesized here, the volume percentage loss values were not so high, probably due to their relatively low content of PNIPAM.  相似文献   

16.
Semicontinuous heterophase polymerization was used to copolymerize methyl methacrylate (MMA) with reactive surfactant HITENOL BC10 (HBC10) at 60 °C using sodium dodecyl sulfate as pre-stabilizing agent and potassium persulfate as initiator. The mixture of MMA and HBC10 was added at constant rate in continuous mode varying the MMA/HBC10 ratio. High-polymerization rates were observed, decreasing as the MMA/HBC10 ratio decreased. Latexes with polymer content near 20% and polymer to surfactant (P/S) weight ratios between 5 and 15 were obtained. Particle sizes distribution were bimodal in all cases with a tendency to be monomodal as HBC10 concentration increased which was ascribed to enhanced particle stabilization by the presence of HBC10. The average particle diameters at the end of polymerizations for the first and second populations were around 10 and 50 nm, respectively. Very high average molecular weights were observed (1.4 × 106 ≤ M w  ≤ 2.1 × 106 g/mol), which decreased when HBC10 concentration increased. The corresponding polydispersity indexes (M w /M n ) were in the range of 1.45–2.24.  相似文献   

17.
Yukiya Kitayama 《Polymer》2011,52(13):2729-7593
Behavior of the particle formation based on self-assembling in emulsifier-free, organotellurium-mediated living radical emulsion polymerization (emulsion TERP) of styrene was studied from the molecular weight distributions (MWDs) of polystyrene (PS) formed in an initial stage of the polymerization at different temperatures from 50 °C to 70 °C. As the polymerization temperature was decreased, the larger number of poly(methacrylic acid) (PMAA; degree of polymerization, 30)-methyltellanyl (TeMe) (PMAA30-TeMe) participated in the polymerization, resulting in amphiphilic PMAA30-b-PS-TeMe oligomers. Almost all control agents were consumed and a self-assembly nucleation occurred in the initial stage of the polymerization at 50 °C, which lead to depress of particle formation of a homogeneous nucleation. The consumption rate of PMAA30-TeMe affected directly the particle formation. From these results, it is concluded that it is important for the emulsion TERP of styrene with excellent control/livingness that the self-assembly nucleation proceeds without the homogeneous nucleation in the initial stage of the polymerization.  相似文献   

18.
Inês de F.A. Mariz 《Polymer》2010,51(18):4044-372
A polymerization process to synthesize bimodal latexes with maximum particle diameters below 350 nm and solids content above 65 wt% has been developed.The process is based on an iterative strategy to determine the optimal particle size distribution that gives the maximum packing factor for a given range of particle sizes and at a given solids content. The calculated optimal bimodal PSD was experimentally obtained in a seeded semi-continuous emulsion polymerization reaction as follows: in the first step, a polymer seed latex was loaded in the reactor and grown, under monomer starved conditions, until a given particle size. At this point a fraction of the same seed was added to the reactor and the feed was continued until the desired particle size distribution and solids content were achieved. The point at which the seed was added again to the reactor and the amount of seed required were determined by the iterative strategy and depended on the competitive growth rate ratio of large and small particles that is an input for the iterative strategy.Implementation of the solution obtained from the iterative strategy, and for the first time in the open literature, led to the production of a coagulum free and stable bimodal latex with 70 wt% of solids content and particle sizes below 350 nm.  相似文献   

19.
Summary  Various diameters of polyaniline (PANI) nanofibers were easily made by varying the sweep rate in the electrochemical polymerization of the aniline monomer. At a sweep rate of 5 mV/s, the PANI nanofibers have an average diameter of 450 nm with a median of 440 nm. The fibers are short, on the order of a few microns in length, and exhibit a branched geometry. Increasing the sweep rate to 50 mV/s produced longer nanofibers with a smaller average diameter of 200 nm. Nanofibers synthesized at 100 mV/s were noted to be smaller with an average and median diameter of 100 nm. These results illustrate the ease in which the morphology of nanostructured PANI can be altered and indicate that the method has the potential to create multi-diameter fibers or mixed-morphology materials.  相似文献   

20.
Water-dispersible poly(thiophene-co-3-thiopheneacetic acid) (PThTA) nanoparticles were successfully prepared by Fe3+-catalyzed oxidative polymerization in the absence of a surfactant. This facile method adopted the recyclable FeCl3/H2O2 initiator couple to yield a high conversion of approximately 97%, and the sodium salt of 3-thiopheneacetic acid (TA) was used for the colloidal stability of the PThTA nanoparticles. The particle formation and growth of PThTA were examined with photoluminescence (PL) spectroscopy and time-evolution variation of the particle number in the early period of polymerization. The final average particle size of PThTA was 320 nm, measured by dynamic light scattering (DLS). The number-average molecular weight of PThTA was about 2 × 104 g/mol. The light-emitting properties of the PThTA nanoparticles in an emulsion state were studied with UV–vis absorption and PL spectroscopy, and it was found that the quantum efficiency increased from 1.43 to 3.22 with the polymerization time at an excitation wavelength of 405 nm. Our results provide new insights on surfactant-free oxidative polymerization and may serve as guidelines for the preparation of new conjugated polymer emulsion systems for potential optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号