首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wen-Fen Su 《Polymer》2011,52(15):3311-3317
This paper describes the synthesis of a solution-processable and thermally cross-linkable 2,7-bis-[4-bis(4-vinylphenyl)aminophenyl]-9,9-dihexylfluorene (VTF) and its application as hole-transporting layer in multilayer polymer light-emitting diodes (PLEDs). The thermal, photophysical, and electrochemical properties of VTF were investigated by differential scanning calorimetry, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry. The VTF is readily cross-linked via vinyl groups by heating at 180 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLEDs (ITO/PEDOT:PSS/cured-VTF/MEH-PPV/Ca/Al) were readily fabricated by spin-coating process using cross-linked VTF as hole-transporting layer (HTL). The maximum brightness (13,640 cd/m2) and current efficiency (0.69 cd/A) were superior to those without HTL (ITO/PEDOT:PSS/MEH-PPV/Ca/Al: 7810 cd/m2, 0.28 cd/A). In addition, the cured-VTF could replace conventional hole-injection layer (PEDOT:PSS) to reveal comparable performance (8240 cd/m2, 0.44 cd/A). Current results indicate that the VTF with four thermally cross-linkable terminal vinyl groups is a promising optoelectronic material, which is readily processed by wet processes.  相似文献   

2.
Juin-Meng Yu 《Polymer》2010,51(20):4484-4492
This paper demonstrates synthesis of hyperbranched polymers (HTP and HTPOCH3), containing triphenylamine moieties in main chain and thermally cross-linkable periphery or terminal vinyl groups, and application as hole-transporting layer (HTL) in multilayer light-emitting diodes. Absorption and photoluminescence (PL) spectroscopy, cyclic voltammetry (CV) and differential scanning calorimetry (DSC) were employed to investigate their photophysical, electrochemical properties and thermal curing behaviors, respectively. The hyperbranched HTP and HTPOCH3 were readily cross-linked by heating scan, with the exothermic peaks being at 221 and 210 °C respectively. The glass-transition temperatures (Tg) of the hyperbranched polymers were higher than 140 °C after thermal cross-linking at 210 °C for 30 min. Multilayer light-emitting diodes (ITO/PEDOT:PSS/HTL/MEH-PPV/Ca/Al), using HTP and HTPOCH3 as HTL, were readily fabricated by successive spin-coating. The performance of MEH-PPV device (maximum luminance: 9310 cd/m2, luminance efficiency: 0.26 cd/A) was effectively enhanced by inserting the thermally cross-linked HTP or HTPOCH3 as HTL (HTP: 12610 cd/m2, 0.32 cd/A; HTPOCH3: 14060 cd/m2, 0.33 cd/A). This indicates that these thermally cross-linkable hyperbranched HTP and HTPOCH3 are very suitable for the fabrication of multilayer PLEDs using solution processes.  相似文献   

3.
Wen-Fen Su 《Polymer》2010,51(7):1555-1562
This paper describes the synthesis of new copolyfluorenes (P05-P5) slightly doped with 2,5-bis(2-phenyl-2-cyanovinyl)thiophene (GM, <3.4 mol%) and their application in electroluminescent (EL) devices. In film state, EL spectra of the copolyfluorenes are very different from photoluminescence (PL) spectra, which have been ascribed to charge trapping in GM and energy transfer from fluorene segments to GM chromophores. The maximum brightness and current efficiency of EL device from P05 (5230 cd/m2, 0.65 cd/A) are significantly enhanced when compared with those from poly(9,9-dihexylfluorene) (PF) (1310 cd/m2, 0.18 cd/A). The EL device using blend of P5 and PF (w/w = 10/1) as emitting layer exhibits near-white emission with CIE coordinate being (0.26, 0.32). The results demonstrate that the copolyfluorenes slightly doped with GM chromophore are promising emitting materials for optoelectronic devices.  相似文献   

4.
《Polymer》2007,48(1):116-128
A new series of sulfide-containing polyfluorene homopolymers and copolymers (PFS, PF1, PF3 and PF4) comprising 9,9-di[11-(decylsulfanyl)undecyl] fluorene, 9,9-dihexylfluorene, triphenylamine or benzothiadiazole moieties were synthesized by Ni(0)-mediated Yamamoto-coupling and palladium-catalyzed Suzuki polymerizations. Three other polyfluorenes (PF2, PF5 and PFC6) without sulfur atom in the alkyl side chains were also synthesized by a similar method for comparison purpose. These fluorene-based polymers were characterized using FT-IR spectroscopy, elemental analysis, DSC, TGA, photoluminescence (PL) and electroluminescence (EL) spectroscopies. The synthesized polymers PFS and PF1PF3 emit blue light at around 440–468 nm, while copolymers PF4 and PF5 emit green light at around 540 nm. In annealing experiments, these polymer films show better stability against thermal oxidation than polymer PFC6. Sulfide-containing polymers show not only good electroluminescent color stability, but their EL spectra also remain unchanged at high driving voltage. A multi-layer electroluminescent device with the configuration of ITO/PEDOT/PF1/CsF/Al exhibited a stable sky-blue emission with color coordinates (0.21, 0.23) at 10 V, which showed a maximum brightness of 2991 cd/m2 at 8 V (75 mA/cm2) and a maximum efficiency of 1.36 cd/A. Finally, by ligand exchange process, the sulfur element could form coordination bonding with quantum dots, and PLED devices using these new QDs-containing organic/inorganic hybrid materials as light-emitting layers exhibit superior or comparable EL performance compared to those without quantum dots.  相似文献   

5.
A series of novel blue light-emitting copolymers PCC-1, PCC-2, and PCC-3, composed of different ratios of electron-withdrawing segments (spirobifluorene substituted with cyanophenyl groups) and electron-donating segments (carbazole-triphenylamines), has been synthesized and characterized. In order to investigate the effect of hole/electron charge transporting segments, two reference polymers PSF and PCF, containing only one charge transporting moiety in the polymer backbone, were also synthesized. Incorporation of the rigid spirobifluorene units substituted with cyanophenyl groups into the polymer backbone improved not only the thermal stabilities but also the photoluminescence efficiencies. The polymers except PSF possess similar hole injection barriers but different hole transporting abilities. With the device configuration of ITO/PEDOT:PSS/polymers:PBD/CsF/Ca/Al, PCC-2 showed the best performance with the lowest turn-on voltage of 3.1 V, the highest luminance of 6369 cd/m2, the highest current efficiency of 1.97 cd/A, and the best power efficiency of 1.40 lm/w.  相似文献   

6.
Wen-Fen Su 《Polymer》2011,52(1):77-4752
This paper describes the synthesis of a new thermally cross-linkable hole-transporting poly(fluorene-co-triphenylamine) (PFTV) by Suzuki coupling reaction and its application in polymer light-emitting diodes (PLEDs). The characteristics of PFTV were analyzed by 1H NMR, differential scanning calorimetry, optical spectroscopy, cyclic voltammetry, and atomic force microscopy. Its HOMO level lies between those of PEDOT:PSS and poly(9,9-dioctylfluorene), forming a stepwise energy ladder to facilitate hole-injection. Multilayer device with thermally cross-linked PFTV as hole-transporting layer (ITO/PEDOT:PSS/HTL/PFO/LiF/Ca/Al) was readily fabricated by successive spin-coating processes, its maximum luminance efficiency (2.27 cd/A) was significantly higher than that without PFTV layer (0.50 cd/A). In addition, the PFTV was successfully applied as host for red-emitting Ir(piq)2acac to obtain a device with moderate performance (5300 cd/m2 and 2.64 cd/A). The PFTV is a promising hole-transporting material for the fabrication of multilayer PLEDs by wet processes as well as a potential host for phosphorescent PLEDs.  相似文献   

7.
Novel hole-transporting polyurethane, denoted as P1, resulting from the condensation of 9, 9-bis(4-hydroxyphenyl)fluorene and isophorone diisocyanate (denoted as IPDI) has been developed. When P1 is thermally consolidated in the presence of 2-(phosphonooxy)ethyl methacrylate (P2M), it forms a distinguished hole-transport layer that leads to an extremely good performance of the phosphorescent PLED. In the study, the device of ITO/PEDOT: PSS/P1-P2M/Ir(ppy)3-t-PBD-PVK/Mg/Ag shows a high current efficiency of 27.6 cd/A and a low turn-on voltage of 6 V. In particular, the stable output efficiency of 17–22 cd/A within the range of 420–4400 cd/m2 at 12–20 V makes P1 a promising hole-transport material for phosphorescent PLED applications.  相似文献   

8.
Two fluorene-based copolymers (PF-33F and PF-50F) with p-difluorophenylene units in the backbone were synthesized. In comparison with the reference poly(9,9-dioctylfluorene) (PFO), the introduction of p-difluorophenylene units not only increased the fluorescent quantum yields, but also improved the spectra purity and stability of these deep blue emitting copolymers. The famous green emission band at 520 nm from fluorenone defects was never detected for these copolymers even after they were thermal annealed in air at 150 °C. Organic light-emitting diodes were fabricated using them as emitting layer and pure blue electroluminescence was obtained. It was observed that PF-33F based device exhibited much higher current density and brightness than PF-50F and PFO devices. A maximum external quantum efficiency of 1.14% (1.14 cd A?1) and the CIE (0.16, 0.13) were achieved for PF-33F device, which are among the best performance for polyfluorenes reported so far.  相似文献   

9.
A series of light-emitting conjugated polymers (LEPs) based on building blocks of electron-donating trifluoren-2-ylamine (TFA), electrically neutral 1,3,5-trifluoren-2-ylbenzene (TFB), and electron-withdrawing 2,4,6-trifluoren-2-yltriazine (TFT) were successfully synthesized via palladium-catalyzed Suzuki cross-coupling polycondensation. Their structure–property relationships were thoroughly studied. For P1 containing electron-withdrawing backbone and electron-donating pendants, their photophysical properties in solution are strongly dependent on the solvent polarity due to the intense intramolecular charge-transfer (ICT) interaction. In addition, their emission colors and energy levels could be effectively tuned by changing the structure of the main chain as well as the substituent at the pendent fluorene of TFT, TFB, and TFA. To evaluate their electroluminescence properties, double-layer devices with a configuration of ITO/PEDOT:PSS (40 nm)/emitting layer (EML) (70–80 nm)/TPBI (30 nm)/CsF (1.5 nm)/Al were fabricated, where the developed polymers were used as an EML and TPBI (2,2′,2″-(1,3,5-benzenetriyl)-tris-(1-phenyl-1H-benzimidazole)) was used as an electron-transport and hole-block layer. Deep-blue light emission was achieved for the device based on P1d, a polymer based on TFT and the second generation (G2) of carbazole dendrimer pendant, that shows a maximum current efficiency (CE) of 1.26 cd A?1, corresponding to external quantum efficiency (EQE) of 1.27%, with Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.14). In comparison, due to the intense ICT interaction between the main chain and the side chain, light-green emission was achieved for the device based on P1c, a polymer based on TFT and bis(9,9-dioctyl-9H-fluoren-2-yl)amine pendant, giving the highest maximum CE of 4.10 cd A?1, corresponding to EQE of 2.45%, with CIE coordinates of (0.24,0.51), although either of the main chain and the side chain emits blue light.  相似文献   

10.
A series of new neutral iridium(III) complexes containing strong-field ancillary ligands, [Ir(ppy)2(PPh3)L] (ppy = 2-phenylpyridine, PPh3 = triphenylphosphine, L = NCS, 1; , 2; NCO, 3), have been synthesized and fully characterized by 1H NMR, IR, ESI mass spectral and elemental analysis. The crystal structure of 1 has been determined by X-ray analysis. The photoluminescence (PL) spectra of 13 show emission maxima at 477, 489 and 485 nm, respectively, corresponding to blue light-emitting of 1 and blue-green light-emitting of 2 and 3. PL quantum yields (PLQYs) of 13 are 0.39, 0.13 and 0.43, respectively.  相似文献   

11.
Two benzothiadiazole-based liquid crystalline polyacrylates were synthesized. These polymers revealed a nematic liquid crystal phase and exhibited photoluminescence as well as polarized electroluminescence when incorporated into light-emitting diode applications. The polymers showed dichroic ratios of about 8.3–8.8 in UV-vis absorption and photoluminescence emission. The polymer with vinylene linkages (P2) showed better electroluminescence device performance than that with acetylene linkages (P1). The P2 device emitted red light at 604 nm with a turn-on voltage at 6 V, and a maximum polarized luminance of 235 cd/m2 at 12 V, with an efficiency of 0.09 cd/A and a polarization ratio of 6.5.  相似文献   

12.
Hua Tan 《Polymer》2011,52(21):4792-155
A series of donor(D)-acceptor(A)-based polyfluorene derivatives, which contain carrier-transporting units of carbazole and oxadiazole as the substitutes of the C-9 position of ?uorene and are end-capped with the red-emitting iridium bi(phenylisoquilonato)(picolinato) unit by unconjugated linkage, were synthesized and characterized. The molar ratios between the donor of carbazole and the acceptor of oxadiazole moieties were found to significantly influence photoluminescent efficiency, electrochemical and electroluminescent properties of these D-A-based polyfluorene derivatives. While the ratio increased to 3:7, the PFCz3OXD7Ir showed the best device performance in the polymer light-emitting device with a configuration of ITO/PEDOT/polymers/LiF/Al. A turn-on voltage of 6.0 V, a maximum current efficiency of 0.59 cd/A and the highest luminance of 917 cd/m2 were presented.  相似文献   

13.
Two novel alternating phenylenevinylene copolymers P6 and P12 as well as one fluorenevinylene copolymer F connected at the 1,7 bay positions with perylene bisimide were synthesized by Heck coupling. They were characterized by GPC, FT-IR, 1H NMR, TGA, TMA, UV–vis, cyclic voltammetry and photoluminescence (PL) emission spectra. The copolymers were soluble in common organic solvents and thermally stable up to ~300 °C. Their glass transition temperatures were 48–60 °C. The long wavelength absorption maximum was located at 510–542 nm with optical band gaps of ~2.0 eV. The PL emission maximum of P6 and P12 was red-shifted relative to F. The photovoltaic performance of P6, P12 and F was also investigated.  相似文献   

14.
A new series of super high brightness and luminance efficient poly(2,3-diphenyl-1,4-phenylene vinylene) (DP-PPV)-based electroluminescent (EL) polymers containing methoxy or long branched alkoxy chains were synthesized via Gilch polymerization. The branched alkoxy groups were introduced to enhance solubility for blade and spin-coating processes. Monomers of DMeO-PPV and m-Ph-PPV were used to increase steric hindrance and prevent close packing of the main chain. By controlling the feeding ratio of different monomers during polymerization, DP-PPV derivatives with high molecular weight were obtained. All synthesized polymers possess high glass transition temperatures and thermal stabilities. The maximum photoluminescent emissions of the thin films are located between 544 and 547 nm. Cyclic voltammetry analysis reveals that the band gaps of these light-emitting materials are in the range of 2.75-2.84 eV. Blade coating was used to fabricate multilayer polymer light-emitting diodes. A multilayer electroluminescent device with the configuration of ITO/PEDOT:PSS/TFB/P1/TPBi/LiF/Al exhibited a very high luminescence efficiency (10.96 cd A−1). The maximum brightness of the multilayer EL device ITO/PEDOT:PSS/TFB/P3/CsF/Al reached up to 78,050 cd m−2 with a low turn-on voltage (4.0 V). For further investigation, polymer P3 was blended with DPPFBNA to achieve white light-emitting device; the multilayer devices generated a maximum brightness of 1085 cd m−2 and a luminance efficiency of 0.75 cd A−1, with CIE coordinates (0.28, 0.33) at 11 V.  相似文献   

15.
Ting-Zhong Liu 《Polymer》2005,46(23):10383-10391
In an attempt to balance energy barriers of hole and electron injection we prepared and characterized homopolymer containing electron-transporting 1,2-diphenylmaleimide chromophores (P1) and copolymers consisting of 1,2-diphenylmaleimide and hole-transporting 2,5-thiophene moieties (P2, P3) via dehalogenation polycondensation. The copolymers are amorphous materials with decomposition temperature greater than 450 °C. Absorption and fluorescence spectra were employed to investigate their optical properties both in solution and film state. Photoluminescence maxima of P1, P2 and P3 films are 564, 559 and 558 nm, respectively. The HOMO and LUMO energy levels have been estimated from their cyclic voltammograms. The HOMO levels of P1, P2, and P3 were readily raised with increasing thiophene content (−5.99, −5.59, and −5.43 eV, respectively), whereas their LUMO levels were very similar (−3.61 to −3.65 eV). Double-layer light-emitting diodes (Al/PEDOT:PSS/P1-P3/ITO) were fabricated to evaluate their optoelectronic characteristics. Incorporation of thiophene units successfully reduced the turn-on electric field from 11.0×105 to 2.9×105 V/cm, but it decreased the luminescent efficiency and the maximum brightness.  相似文献   

16.
Chih-Cheng Lee 《Polymer》2008,49(19):4211-4217
A series of vinyl copolymers (P1-P6) containing pendant hole-transporting triphenylamine (11-88 mol%) and carbazole chromophores were synthesized by radical copolymerization to investigate the influence of triphenylamine groups upon optoelectronic properties. The copolymers were readily soluble in common organic solvents and their weight-average molecular weights (Mws) were between 1.41 × 104 and 2.24 × 104. They exhibited moderate thermal stability with Td = 402-432 °C at 5% weight loss. The emission spectra (both PL and EL) of the blends [P1-P6 with 4 wt% Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from P1-P6 to Ir(ppy)3. The HOMO levels of P1-P6, estimated from onset oxidation potentials in cyclic voltammeter, were −5.42 to −5.18 eV, which are much higher than −5.8 eV of conventional poly(9-vinylcarbazole) (PVK) host owing to high hole-affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using P1-P6 as hosts and Ir(ppy)3 as dopant (ITO/PEDOT:PSS/P1-P6:Ir(ppy)3 (4 wt%):PBD (40 wt%)/BCP/Ca/Al), were greatly improved relative to that of PVK. The best performance was obtained with P4 device, in which the maximum luminance and luminance efficiency were 11?501 cd/m2 and 10.6 cd/A, respectively.  相似文献   

17.
Color stability and efficiency roll-off of white light-emitting diodes (WOLEDs) with blue fluorescent and red phosphorescent emitting materials were manipulated by controlling the charge transport properties of interlayer and triplet host materials. A pure white emission was observed in WOLEDs with a bipolar interlayer and a hole transport type triplet host material. A white color coordinate of (0.31, 0.35) and a current efficiency of 14.4 cd/A were obtained. In addition, color index of WOLEDs could be kept stable up to a high luminance of 10,000 cd/m2 and an efficiency roll-off was also suppressed.  相似文献   

18.
An organic-inorganic hybrid solid (DMDP)[Hg(SCN)4] (1) (DMDP = 2,8-(6H,12H-5,11-methanodibenzo[b,f]diazocineylene)-di(p-ethenyl-N-methyl-pyridinium)) was designed and synthesized. X-Ray structural analysis reveals that it comprises a 3-D interpenetrating superstructure that 1-D inorganic anionic chains {[Hg(SCN)4]2 } penetrates into 2-D organic (DMDP)2 + cationic network. Photoluminescence investigation show that compound 1 exhibits a typical aggregation-induced emission (AIE) properties.  相似文献   

19.
Jung-Feng Lee 《Polymer》2009,50(12):2558-288
A novel series of blue and yellowish-green light-emitting single polymers were prepared by end-capping of low contents of 4-bromo-7H-benzo [de]naphtha[2′,3′:4,5]imidazo[2,1-a]isoquinolin-7-one (M1) into polyfluorene. Electroluminescence (EL) spectra of these polymers exhibit blue emission (λmax = 430/460 nm) from the fluorene segments and yellowish-green emission (λmax = 510/530 nm) from the M1 units. For the polymer (PFNAP-0.06) with the M1 unit content of 0.06 mol-%, its EL spectrum shows balanced intensities of blue emission and yellowish-green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.34). The maximum brightness of the device prepared from the polymer (PFNAP-0.06) is 6704 cd/m2 at 10 V with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. A new white polymer-light-emitting-diode (WPLED) can be developed from the single polymer (PFNAP-0.06) system blended with a red phosphorescent iridium complex [Bis(2-[2′-benzothienyl)-pyridinato-N,C3′] iridium (acetylacetonate) (BtpIr)]. We were able to obtain a white-light-emission device by adjusting the molar ratio of BtpIr to PFNAP-0.06 with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. The brightness in such a device configuration is 4030 cd/m2 at 9 V with CIE coordinates of (0.32, 0.34).  相似文献   

20.
Yung-Hsin Yao 《Polymer》2006,47(25):8297-8308
Two series of poly(p-phenylene vinylene) and polyfluorene derivatives (PPV1-PPV4 and PF1-PF5) containing laterally attached penta(p-phenylene) mesogenes were synthesized and characterized. These polymers show nematic liquid crystalline behavior. The optical properties of the polymers were investigated by UV-vis absorption and photoluminescence spectrometers and these polymers were fabricated to form the polarized electroluminescent devices using poly(ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as an alignment layer. In the series of poly(p-phenylene vinylene) derivatives, polymer PPV4 offered the best EL device performance. It emitted yellow light at 588 nm at 4 V. The maximum brightness was about 1337 cd/m2 at 9 V with a polarized ratio of 2.6. In another series of polyfluorene derivatives, PF4 offered the best EL device performance with the polarized ratio of 12.4 and a maximum luminescence of 1855 cd/m2. In the case of polarized white light, as a consequence of blending small amount of PF4 and PF5 with a host polymer PF2, polarized ratio of up to 10.2 and a maximum brightness of 2454 cd/m2 have been attained. The aligned films exhibited pronounced polarized ratio, implying that the polymers exhibit potential for linearly polarized LED application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号