首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polymer》2007,48(1):139-149
A novel biodegradable triblock copolymer poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-lysine) (PEG–PLA–PLL) was synthesized by acidolysis of poly(ethylene glycol)-b-poly(l-lactide)-b-poly(ɛ-benzyloxycarbonyl-l-lysine) (PEG–PLA–PZLL) obtained by the ring-opening polymerization (ROP) of ɛ-benzyloxycarbonyl-l-lysine N-carboxyanhydride (ZLys NCA) with amino-terminated PEG–PLA–NH2 as a macroinitiator, and the pendant amino groups of the lysine residues were modified with a peptide known to modulate cellular functions, Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) in the presence of 1,1′-carbonyldiimidazole (CDI). The structures of PEG–PLA–PLL/RGD and its precursors were confirmed by 1H NMR, FT-IR, amino acid analysis and XPS analysis. The cell adhesion and cell spread on the PEG–PLA–PLL/RGD film were enhanced compared to those on pure PLA film. Therefore, the novel RGD-grafted triblock copolymer is promising for cell or tissue engineering applications. Both copolymers PEG–PLA–PZLL and PEG–PLA–PLL showed an amphiphilic nature and could self-assemble into micelles of homogeneous spherical morphology. The micelles were determined by fluorescence technique, dynamic light scattering (DLS), and field emission scanning electron microscopy (ESEM) and could be expected to find application in drug and gene delivery systems.  相似文献   

2.
The current range of medical applications of resorbable polyesters could be hugely expanded if more effective strategies for tailoring degradation rate were available. Block copolymerisation with poly(ethylene glycol) (PEG) has been shown to reduce degradation times; however, to date, this has relied on the addition of PEG to short lengths of polyester. This results in copolymers with high fractions of PEG and low molecular weights, reducing the potential range of applications. Furthermore, there has been no systematic study of the relative lengths of the blocks. In this work, we employed short hydroxyl‐functionalised methoxy‐terminated mPEG to initiate the synthesis of poly(l ‐lactide) (PLLA), resulting in controlled di‐block copolymers with short mPEG blocks and long PLLA blocks. A controlled series of polymers was made with PLLA lengths (60 < Mn (kg mol?1) < 200) and mPEG lengths (550 < Mn (g mol?1) < 5000) giving very low mPEG content (0.1–1.5 wt%). We found that, despite the low fraction of mPEG, water uptake and the rate of hydrolytic degradation, k, increased. Significantly, k for the polymers was dependent only on the presence of mPEG, and was little affected by mPEG length or PLLA length in the ranges studied. Moreover, mass loss began in all polymers when Mn of the polymer fell below a threshold of about 20 kg mol?1 and depended on both the initial molecular weight of PLLA and the presence (but not the length) of mPEG. Short‐chain mPEG therefore provides a new route for targeted, temporal control of resorbable polyesters for biomedical devices. © 2018 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

3.
mPEG–PLLA (poly l-lactic acid) is synthesized by ring-opening polymerization of lactide and conjugation with mPEG. Sebacic acid is modified with acetic anhydride and condensed with mPEG to form mPEG–PSA (poly sebacic anhydride). The micelles formed by mPEG–PLLA are characterized by slow degradation and low drug encapsulation efficiency; on the contrary, mPEG–PSA micelles are characterized by rapid degradation but high encapsulation efficiency. They can merge into spherical micelles (Φ = 140 nm) by self-assembly in water. The mixed micelles can successfully encapsulate a typical hydrophobic drug (curcumin), and significantly improve its solubility. Experimental results show that the mixed micelles have the features of high encapsulation efficiency and slow degradation.  相似文献   

4.
We present the synthesis of fluorescein isothiocyanate (FITC)-labeled poly(ethylene oxide)-block-poly(?-caprolactone)-block-poly(ethylene oxide) (PEO-PCL-PEO) triblock copolymers and their applications for tracking the penetration behavior of FITC-labeled copolymers in the hairless mouse skin. In the first step, PEO-PCL diblock copolymers with different ratios of PCL to PEO (i.e., [CL]/[EO]) were prepared by ring opening polymerization of ?-caprolactone (CL), where monomethoxy poly(ethylene glycol) (mPEG, Mn = 2000 g mol−1) was used as a macro-initiator. FITC was successively reacted with octadecylamine, isophorone diisocyanate (IPDI), and then used as a linker to obtain PEO-PCL-PEO triblock copolymers from the PEO-PCL diblock copolymers. In aqueous solution, both FITC-labeled triblock copolymers show two UV absorption peaks at 489 and 455 nm, attributed to the monomeric FITC and H-aggregated FITC moieties, respectively. Due to the strong H-aggregation of FITC in the copolymer of high [CL]/[EO], fluorescent emission intensities considerably decreased at high concentrations of the copolymer. FITC-labeled copolymers exhibited more sharper polarized optical and fluorescence microscopic images compared to the mixtures of FITC and unlabeled copolymer in both solid crystalline and multiple emulsion state. Furthermore, the Frantz diffusion cell test was carried out to demonstrate the penetration behavior of the FITC-labeled copolymers in the hairless mouse skin.  相似文献   

5.
Summary Poly(methyl methacrylate)-block-polysulfide-block-poly(methyl methacrylate) copolymers were synthesized for the first time through a new method involving the free radical polymerization of MMA in the presence of a thiocol oligomer as a chain transfer agent, followed by chemical oxidation of the remaining SH end-groups. The chain transfer constant of the SH end-groups of the thiocol was estimated from the rate of consumption of the thiol groups versus the rate of consumption of the monomer (CT=0.67). The triblock copolymers synthesized were characterized by SEC and 1H NMR measurements.  相似文献   

6.
The non-isothermally and isothermally crystallized stereodiblock copolymers of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with equimolar l-lactyl and d-lactyl units and different number-average molecular weights (Mn) of 3.9 × 103, 9.3 × 103, and 1.1 × 104 g mol−1, which are abbreviated as PLLA-b-PDLA copolymers, contained only stereocomplex crystallites as crystalline species, causing higher melting temperatures of the PLLA-b-PDLA copolymers compared to those of PLLA homopolymers. In the case of non-isothermal crystallization, the cold crystallization temperatures of the PLLA-b-PDLA copolymers during heating and cooling were respectively lower and higher than those of PLLA homopolymers, indicating accelerated crystallization of PLLA-b-PDLA copolymers. In the case of isothermal crystallization, in the crystallizable temperature range, the crystallinity (Xc) values of the PLLA-b-PDLA copolymers were lower than those of the PLLA homopolymers, and were susceptible to the effect of crystallization temperature in contrast to that of homopolymers. The radial growth rate of the spherulites (G) of the PLLA-b-PDLA copolymers was the highest at the middle Mn of 9.3 × 103 g mol−1. This trend is different from that of the PLLA homopolymers where the G values increased monotonically with a decrease in Mn, but seems to be caused by the upper critical Mn values of PLLA and PDLA chains as in the case of PLLA/PDLA blends (in other papers), above which homo-crystallites are formed in addition to stereocomplex crystallites. The disturbed crystallization of PLLA-b-PDLA copolymers compared to that of the PLLA/PDLA blend is attributable to the segmental connection between the PLLA and PDLA chains, which interrupted the free movement of those chains of the PLLA-b-PDLA copolymers during crystallization. The crystallite growth mechanism of the PLLA-b-PDLA copolymers was different from that of the PLLA/PDLA blend.  相似文献   

7.
Chang-Hong Ho  Yu-Der Lee 《Polymer》2010,51(7):1639-1647
This investigation characterizes the molten morphologies following isothermal crystallization of poly(l-lactide-block-dimethyl siloxane-block-l-lactide) triblock copolymers, which were synthesized by ring-opening polymerization of l-lactide using hydroxyl-telechelic PDMS as macroinitiators, via small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The break-out and preservation of the nanostructure of the triblock copolymer depended on the segregation strength, which was manipulated by varying the degree of polymerization. The crystallization kinetics of these semicrystalline copolymers and the effect of isothermal crystallization on their melting behaviors were also studied using DSC, FT-IR and WAXS. The exclusive presence of α-phase PLLA crystallite was verified by identifying the absence of the WAXS diffraction signal at 2θ = 24.5° and the presence of IR absorption at 1749 cm−1 when the PLLA segment of the block copolymers was present as a minor component. The dependence of the crystallization rate (Rc) on the chemical composition of the triblock copolymers reveals that the Rc of the triblock copolymers was lower than that of PLLA homopolymer and the Rc were substantially reduced when the minor component of the crystallizable PLLA domains was dispersed in the PDMS matrix.  相似文献   

8.
Poly(ethylene oxide)-b-poly(butadiene-co-acrylonitrile)-b-poly(ethylene oxide) (PEO-b-PBN-b–PEO) triblock copolymers with three different compositions were synthesized from poly(ethylene glycol) methyl ethers and carboxylic acid-terminated poly(butadiene-co-acrylonitrile) (CTBN) by ester coupling reaction at room temperature. The PEO-b-PBN-b-PEO was incorporated into anhydride cured epoxy thermosets to improve the fracture toughness by the formation of either nano-sized spherical micelles or micron-sized vesicles. The polymer chemical structure was confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and gel permeation chromatography. The morphology of PEO-b-PBN-b–PEO within the epoxy thermosets was investigated using a transmission electron microscope, an atomic force microscope, and a scanning electron microscope. Also, we conducted impact testing and plane-strain fracture toughness testing to evaluate the fracture toughness in terms of the impact strength and the critical stress intensity factors (KIC) for the modified epoxy thermosets. The results revealed that all the PEO-b-PBN-b-PEO triblock copolymers are more effective in the toughening of epoxy thermoset compare to CTBN. We found that the 5 wt% PEO-b-PBN-b-PEO modified epoxy thermoset containing micron-sized vesicles exhibited the highest KIC, which was 3.23 times as high as the KIC of pristine epoxy thermoset. Besides, the glass transition temperature remained and the tensile modulus did not reduce remarkably when the amount of PEO-b-PBN-b-PEO added into epoxy was 5 wt%.  相似文献   

9.
Summary  Well-defined water-soluble poly(styrenesulfonate)-b-poly(ethylene glycol)-b- poly(styrenesulfonate) (PSS-b-PEG-b-PSS) triblock copolymers with narrow molecular weight distribution (1.29 < Mw/Mn < 1.36) were synthesized in aqueous solution at 70 oC via reversible addition-fragmentation chain transfer (RAFT) polymerization. The complex formed by the PSS-b-PEG-b-PSS triblock copolymer coordinated with aluminum ion was investigated with turbidimetry, dynamic light scattering (DSL), zeta-potential, and transmission electron microscopy (TEM). The aggregation formation was based on the neutralization of the SO3- groups in the PSS blocks with Al3+ ions. The appearance, size and stability of the PSS-b-PEG-b-PSS/Al3+ aggregates were controlled by varying the PSS block length and degree of neutralization (DN). At DN = 0.33, where the PSS-b-PEG-b-PSS copolymer was completely neutralized with Al3+, the aggregate size increased with increasing PSS block length. The transition from the shrinking coil of small size to the interchain aggregates of large size was found at DN of about 0.33.  相似文献   

10.
Summary The triblock copolymers of poly(p-dioxanone)-b-poly(tetrahydrofuran)-b-poly(p-dioxanone) were synthesized by ring-opening polymerization of p-dioxanone in the presence of dihydroxyl poly(tetrahydrofuran)(PTHF) using stannous octoate (SnOct2) as a catalyst. The effects of feed ratio, reaction time and reaction temperature on the copolymerization were investigated. It was found that the optimal reaction temperature and time were 80 °C and 42 hours, respectively, and the molar ratio of p-dioxanone/SnOct2 (PDO/cat.) had little influence on the inherent viscosity of the copolymers. The triblock copolymers were characterized by various analytical techniques such as 1H-NMR and DSC.  相似文献   

11.
Two enantiomeric triblock ABA copolymers composed of poly(L ‐lactide)–poly(ethylene glycol)–poly(L ‐lactide) (PLLA–PEG–PLLA) and poly(D ‐lactide)–poly(ethylene glycol)–poly(D ‐lactide) (PDLA–PEG–PDLA) were synthesized with two different middle‐block PEG chain lengths by ring‐opening polymerization of L ‐lactide and D ‐lactide in the presence of PEG, respectively. A pair of enantiomeric triblock copolymers were combined to form a stereocomplex by a solvent‐casting method. The triblock copolymers and their stereocomplexes were characterized by 1H‐ and 13C‐NMR spectroscopy and gel permeation chromatography. Their crystalline structures and crystalline melting behaviors were analyzed by the wide‐angle X‐ray diffraction method and differential scanning calorimetry. The stereocomplex formed between a pair of enantiomeric triblock copolymers exhibited a higher crystalline melting temperature with a distinctive 3/1 helical crystalline structure. PLLA–PEG–PLLA and its stereocomplex with PDLA–PEG–PDLA were used to fabricate a series of microspheres encapsulating a model protein drug, bovine serum albumin (BSA). They were prepared by a double‐emulsion solvent‐evaporation method. The morphological aspects of the microspheres were characterized and BSA release profiles from them were investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1615–1623, 2000  相似文献   

12.
Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide.  相似文献   

13.
A series of biodegradable poly (glycerol-sebacate-l-lactide) (PGSLA) copolymers, with variable PLLA length, were synthesized and characterized. The copolymers comprised PGS backbone chain with a nominal molecular weight of 2,800 g/mol. The length of each PLLA side chain covered the 800–14,000 range, while the length of the PLLA was easily controlled by the feed molar ratio of the l-lactide to the PGS. The structure of the copolymer was studied by nuclear magnetic resonance spectroscopy and gel permeation chromatography. Differential scanning calorimetric measurements and thermal gravimetric analysis had been performed to indicate the glass transition temperature (T g), melting point (T m), and the degree of crystallinity (χ c). It was also found that the onset decomposition temperature (T d) of the copolymers was lower than those of the linear polylactide (LPLLA). After solution casting and solvent evaporation, porous structures were found in the copolymer films by scanning electron microscope (SEM). Water contact angle results showed that the hydrophilicity of the copolymers was much higher than that of linear PLLA. In vivo, PGSLA copolymer demonstrated a favorable tissue response profile compared to PGS/LPLLA blend. There was also significantly less inflammation and fibrosis during degradation. PGSLA might therefore serve as an excellent candidate material for medical applications, given its minimal in vivo tissue response.  相似文献   

14.
The melt rheological behavior of segmented block copolymers with high melting diamide (A) hard segments (HS) and polyether (B) soft segments was studied. The block copolymers can be classified as B (monoblock), AB (diblock), ABA (triblock, diamide end segment), BAB (triblock, diamide mid‐segment) and ? (AB)n? (multiblock) block copolymers. Varied were the number of HS in the chain, the HS concentration, the position of the HS (in the chain or at the end of the chain) and the molecular weight of the copolymers. The melt rheological behavior of the copolymers was studied with a plate–plate method. The materials B (monoblock), BAB (triblock, diamide mid‐segment), and ? (AB)n? (multiblock) block copolymers had a rheological behavior of a linear polymer and the complex viscosity increased with molecular weight. Surprisingly, the diblock copolymers AB and the triblock copolymers ABA at low frequencies and near the melting temperature of the copolymers had the behavior of a gelled melt. The diamide segments at the chain end seemed to form aggregates, whereas the diamide mid‐segments did not. Also, time‐dependent rheology of diblock copolymer confirmed the network structure built up in the melt. The block copolymers with H‐bonding diamide end segments had a thixotropic behavior. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
We recently achieved quantitative synthesis of an amphiphilic coil-rod-coil triblock copolymer, poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine), by coupling in situ living diblock copolymer poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) using malonyl chloride in the presence of pyridine. This led to the introduction of an active methylene group that is a site for further functionalization in the rod block. The Michael addition reaction of the triblock copolymer with 7-(4-trifluoromethyl) coumarin acrylamide led to copolymer bearing a fluorescent pendent in the rod block. The fluorescent labeled copolymers were isolated in ∼94% yields. Similarly C60 pendent was introduced to the rod block by the Bingel reaction. The yields of C60 functionalized copolymers were ∼54%. The precursor and functionalized amphiphilic coil-rod-coil copolymer show diverse morphologies, such as micelles and vesicles by simply changing the solvent. For the C60 functionalized block copolymer, structural constraints in micelles and vesicles prevented C60 pendents to aggregate.  相似文献   

16.
High molecular weight di- and triblock copolymers of poly(l-lactide), PLLA, (80 wt%) with a crystallizable flexible second component such as poly(ε-caprolactone), PCL, or poly(oxyethylene), PEO, (20 wt%) were obtained in nearly quantitative yields by ring opening of l-lactide initiated by PCL or PEO hydroxy terminated macromers. The copolymers were characterized by 1H NMR and FTIR spectroscopy and size exclusion chromatography and showed unimodal and narrow molecular weight distributions. X-ray diffraction measurements revealed high crystallinity (38-56%) of the PLLA blocks and gave no clear evidences of PCL or PEO crystallinity. DMTA and DSC techniques showed a melting behaviour of the copolymers (Tm=174-175 °C; ΔHm=19-37 J/g) quite similar to that of PLLA. PCL and PLLA segments are immiscible, while PLLA and PEO segments are partially miscible in the amorphous phase. Stress-strain measurements indicated a ductile behaviour of the copolymers, characterized by lower tensile moduli (225-961 Pa) and higher elongations at break (25-134%) with respect to PLLA.  相似文献   

17.
A series of ABA type triblock copolymers [Poly(lactide)-block-poly(hexamethylene 2,3-O-isopropylidene tartarate)-block-poly(lactide)] PLA-b-PHIT-b-PLA based on renewable monomers l-tartaric acid and l-lactide have been synthesized and the effect of the PLA chain length on the properties of the triblock copolymers has been systematically investigated. The block nature of the copolymers was established by differential scanning calorimetry (DSC) which showed two glass transition temperatures (Tg) corresponding to PHIT and PLA blocks. Solution cast films of these triblock copolymers turned out to be brittle in nature and to overcome this, ε-caprolactone was copolymerized with l-lactide to generate a separate series of triblock copolymers [PLA-ran-PCL]-b-PHIT-b-[PLA-ran-PCL]. Our study systematically demonstrates that the PLA-to-PCL ratio in the outer block composition influences the mechanical properties via a delayed post-yield stress drop phenomenon. The study further elaborates the time-synchronized strain-field analysis of the novel triblocks to be a convincing approach for the characterization of micro-deformation modes.  相似文献   

18.
A series of amphiphilic poly(ethylene oxide)-b-poly(n-alkyl glycidyl carbamate)s-b-poly(ethylene oxide) triblock copolymers were synthesized by reaction between poly(ethylene oxide)-b-polyglycidol-b-poly(ethylene oxide) precursor copolymer and four n-alkyl isocyanates: ethyl, propyl, butyl and pentyl. After dissolution in water at room temperature the copolymers spontaneously form micelles. The critical micellization concentrations were determined by UV-VIS spectroscopy. The dimensions of the micelles, the aggregation numbers, and in some cases the micellar shape were determined by dynamic and static light scattering in a relatively broad temperature range. Special attention has been paid to the influence of the number of the carbon atoms in the alkyl chains, and respectively, the relative hydrophobicity of the middle block upon the self-association process. Clouding transition was observed for all of the copolymers, the clouding point being dependent upon the length of the alkyl chain.  相似文献   

19.
Summary  Poly(ε-caprolactone)-poly(L-lactide) (PCL-PLLA) block copolymers were synthesized via melt or solution sequential copolymerization of ε-caprolactone (ε-CL) and L-lactide (L-LA) using nontoxic dibutylmagnesium as initiator. The formation of block structure was confirmed by 1H-, 13C NMR, GPC, and FT-IR, it can be concluded that the block copolymers PCL-PLLA have been successfully synthesized by both melt and solution sequential copolymerization methods. Two melting endothermic peaks (Tm) during heating and two crystallization exothermal peaks (Tc) during cooling were observed in DSC curves. XRD patterns of the copolymers were approximately the superposition of both the PCL and PLLA homopolymers. The results indicated the coexistence of both PCL and PLLA crystalline microdomains, and the microphase separation took place in the block copolymers.  相似文献   

20.
We demonstrated here a facile method to synthesize novel double crystalline poly(butylene terephthalate)-block-poly(ethylene oxide)-block-poly(butylene terephthalate) (PBT-b-PEO-b-PBT) triblock copolymers by solution ring-opening polymerization (ROP) of cyclic oligo(butylene terephthalate)s (COBTs) using poly(ethylene glycol) (PEG) as macroinitiator and titanium isopropyloxide as catalyst. The structure of copolymers was well characterized by 1H NMR and GPC. TGA results revealed that the decomposition temperature of PEO in triblock copolymers increased about 30 °C to the same as PBT copolymers, after being end-capped with PBT polymers. These triblock copolymers showed double crystalline properties from PBT and PEO blocks, observed from DSC and WAXD measurements. The melting and crystallization peak temperatures corresponding to PBT blocks increased with PBT content. The crystallization of PBT blocks showed the strong confinement effects on PEO blocks due to covalent linking of PBT blocks with PEO blocks, where the melting and crystallization temperatures and crystallinity corresponding to PEO blocks decreased significantly with increment of PBT content. The confinement effect was also observed by SAXS experiments, where the long distance order between lamella crystals decreases with increasing PBT length. For the triblock copolymer with highest PBT content (PBT54-b-PEO227-b-PBT54), this effect shows a 30 °C depression on PEO crystals' melting temperature and 77% on enthalpy, respectively, compared to corresponding PEO homopolymer. The crystal morphology was observed by POM, and amorphous-like spherulites were observed during PBT crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号