首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
With the emergence and commercialization of nanoparticles, new opportunities have emerged for toughening of epoxy adhesives using nanoparticles without sacrificing strength, rigidity and glass transition temperature, as is the case with conventional elastomeric tougheners. Inorganic Fullerene-like tungsten disulfide (IF-WS2) nanoparticles and functionalized nano-POSS (Polyhedral-Oligomeric-Sil-Sesquioxane) were used to study the effects of nanoparticles on the toughening and mechanical properties of low and high temperature curing epoxy systems. Experimental results indicated that IF-WS2 increased the fracture toughness by more than 10 fold in both epoxy systems at very low concentrations (0.3–0.5 wt%) while increasing its storage modulus and preserving its glass transition temperature. Epoxy functionalized POSS demonstrated an increase in toughness in addition to preserving rigidity and thermal properties at higher concentrations (3 wt%). It was postulated that chemical interaction of the sulfide and the epoxy matrix and the inherent properties of WS2 were the decisive factors with respect to the outstanding nano-effect in the case IF-WS2.  相似文献   

2.
In this work the effect of inorganic fullerene-like (closed cages) nanoparticles of tungsten disulfide (IF-WS2) on the mechanical properties and especially on the toughness of epoxy resins, was studied. The epoxy resin used was the well-known DGEBA (di-glycidyl ether of bis-phenol A) cured with polyamidoamine. The epoxy/IF-WS2 nanocomposites were prepared by applying a high shear mixing to obtain a uniform dispersion and homogeneous distribution of the IF nanoparticles in the epoxy matrix. Two mixing procedures were used — a low shear of short duration and high shear with a long mixing time. The resulting epoxy nanocomposites were first characterized for their shear and peel strength using appropriate bonded joints. The experimental results demonstrate that enhanced shear strengths and shear moduli were achieved, together with a significant increase in the peel strengths at low concentrations of the IF-WS2 nanoparticles (more than 100% increase at 0.5 wt% IF-WS2). Above the threshold value of 0.5% IF-WS2 the peel strength decreased sharply. The fractured surfaces of the bonded joints were examined by transmission and scanning electron microscopy in order to characterize the fracture mechanisms and analyze the dispersion level of the nanoparticles within the polymer. The electron micrographs indicated that the presence of the nanoparticles in the epoxy matrix induced fracture mechanisms which were different from those observed in the pristine epoxy phase. These mechanisms included: crack deflection; crack bowing; and crack pinning. Evidence for a chemical interaction between the nanoparticles and the epoxy were obtained by infrared measurements in the attenuated total transmittance mode. The data suggests the formation of new carbon–oxygen–sulfur bonds, which are most likely due to the reaction of the outermost sulfur layer of the IF nanoparticles with the reactive epoxy groups. The observed simultaneous increase in both shear and peel strengths at very low IF-WS2 concentrations, found in this work, could lead to the development of high performance adhesives and to new types of structural and ballistic fiber nanocomposites.  相似文献   

3.
Differential scanning calorimetry and polarized optical microscopy methods were used to investigate the crystallization behavior and isothermal crystallization kinetics of poly(phenylene sulfide) (PPS)/carbon nanotube (CNT) and PPS/CNT/carbon fiber (CF) composites. In this article, the influences of CNT and CF on PPS crystallization behavior are explained. The thermal conductivity properties of composites were studied using the laser flash method. The results show that CNT increased crystallization temperature and rate and thermal conductivity greatly improved at 8 wt.% CNT content. In addition, the crystallization and thermal performance of PPS are significantly improved via synergistic effects of CNT and CF in the composites.  相似文献   

4.
以钛酸钾晶须(PTW)、高岭土(Kaolin)和滑石粉(Talc)为成核剂,制备了无机成核剂改性聚酰胺6/碳纤维(PA6/CF/NA)三元复合材料。通过分析复合材料的力学性能、动态热力学性能、微观形貌、结晶行为、晶体结构、热性能等对其结构和性能进行了系统的研究。结果表明,加入Talc可以大幅提高PA6/CF复合材料的冲击性能,添加2%(质量分数,下同)的Talc时,复合材料的冲击强度提高了44.5%;Talc在挤出过程中能够充分解离成片层并均匀地分散在PA6基体中,PA6/CF/Talc复合材料中存在大量纤维拔出后形成的孔洞,片层与基体黏结较好;与PTW和Kaolin相比,Talc突出的异相成核作用可以显著提高PA6/CF复合材料的结晶温度,并促进PA6形成更为完善的晶体结构。  相似文献   

5.
《Ceramics International》2022,48(2):1745-1756
In this study, Ti3AlC2 particles doped aluminum matrix composites were prepared by ultrasonic agitation casting method. Microstructure, mechanical properties, and tribological properties of pure aluminum and Ti3AlC2p/Al composites were characterized. Influence of different loads (10, 20, 30, and 40 N) and Ti3AlC2 contents (1.0, 2.0, 3.0, and 4.0 wt%) on the tribological behaviors of the composites were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersion spectroscopy (EDS), and 3D laser confocal were used to assist the analysis. The results indicated that fine and uniformly microstructure and the optimum comprehensive mechanical properties were exhibited on 2.0 wt%-Ti3AlC2p/Al composites. The abrasive grooves were widened and deepened with an increase in the load. The abrasion performance of composites improved distinctly with the addition of the Ti3AlC2 particles, which changed the wear mechanism from adhesive wear to abrasive wear. The 30 N load and the composites of 2.0 wt% Ti3AlC2 revealed the optimum tribological properties. The improvement of the tribological behavior of composites was attributed to the refinement of microstructure, the improvement mechanical properties and the three dimensional layered Ti3AlC2 phases with self-lubricating properties.  相似文献   

6.
The multi-scale reinforcement and interfacial strengthening on carbon fiber (CF)-reinforced methylphenylsilicone resin (MPSR) composites by adding silica-coated multi-walled carbon nanotubes (SiO2-CNTs) were investigated. SiO2-CNT has been successfully prepared via the hydrolysis of tetraethoxysilane in the presence of acid-oxidized multi-walled carbon nanotubes. Transmission electron microscopy, X-ray diffraction, and Fourier Transform infrared spectroscopy were carried out to examine the functional groups and structures of CNTs. Then, SiO2-CNT was incorporated into MPSR matrix to prepare CF/MPSR-based composites by the compression molding method. The effects of the introduced SiO2-CNT on the interfacial, impact, and heat-resistant properties of CF/MPSR composites were evaluated by short-beam bend method, impact test, and thermal oxygen aging experiments, respectively. Experimental results revealed that the CF/MPSR composites reinforced with 0.5 wt% SiO2-CNT showed a significant increase 34.53% in the interlaminar shear strength (ILSS) and 20.10% in impact properties. Moreover, the heat-resistant properties of composites were enhanced significantly by adding SiO2-CNT hybrid nanoparticles. These enhancements are mainly attributed to the improved matrix performance resulted from the molecular-level dispersion of SiO2-CNT in MPSR matrix and the strong interfacial adhesion between SiO2-CNT and matrix resin, which are beneficial to improve the mechanical stress transfer from MPSR matrix to CFs reinforcement and alleviate stress concentrations.  相似文献   

7.
Carbon fiber (CF) reinforced matrix composites have been applied widely, however, the interfacial adhesion of composites is weak due to smooth and chemically inert of CF surface. To solve this problem, A polydopamine/nano-silica (PDA-SiO2) interfacial layer on carbon fiber surface was constructed via polydopamine and nano- SiO2 (CF-PDA-SiO2) by a facile and effective method to reinforce polyamide 6 composites (CFs/PA6). The effects of PDA-SiO2 interfacial layer on crystallization structure and behavior, thermal properties, and mechanical properties of CFs/PA6 composites were investigated. Furthermore, interfacial reinforcement mechanism of composites has been discussed. This interfacial layer greatly increased the number of active groups of CF surface and its wettability obviously. The tensile strength of CF-PDA-SiO2/PA6 composites increased by 28.09%, 19.37%, and 26.22% compared to untreated-CF/PA6, CF-PDA/PA6, and CF-SiO2/PA6 composites, respectively, which might be caused by the increased interfacial adhesion between CF and PA6 matrix. The thermal stability, crystallization temperature, crystallinity, and glass transition temperature (Tg) of CF-PDA-SiO2/PA6 composites improved correspondingly, attributing to the heterogeneous nucleation of nano-SiO2 in the crystalline area and hydrogen bonds with molecular chains of PA6 in the amorphous area. This work provides a novel strategy for the construction of interfaces suitable for advanced CF composites with different structures.  相似文献   

8.
Boehmite alumina nanoparticles are added to PP‐g‐MAH‐compatibilized blends of PA 12 and PP to study the effects of nanoparticle loading in the resulting composites. WAXD and SEM data suggest that the nanoparticles enhanced the coalescence of PP. DSC, DMA, and TGA reveal that the final properties such as crystallization temperature, flexural storage modulus, thermal degradation temperature, etc., improve with increasing nanoparticle loading for blend/based composites. FTIR results show that the nanoparticles interfere with the interfacial activity at 5 wt% nanoparticle loading. All results are compared between the neat polymers and the compatibilized blend and show that despite a slight increase in dispersed‐phase domain size, all other properties improve with the addition of AlO(OH).

  相似文献   


9.
This study reports the manufacture of new fabric forms from the preparation of hybrid laminated multiaxial composites with enhanced thermo‐mechanical properties. Thermal and dynamic mechanical analysis of polymer matrix films and fabricated hybrid composites were used to determine the optimal material composition and reinforcement content for composites with improved viscoelastic properties. The introduction of 5 wt% silica nanoparticles in a composite of p‐aramid–poly(vinyl butyral) led to significant improvements in the mechanical properties, and the addition of silane coupling agents yielded maximal values of the storage modulus for hybrid nanocomposites. The introduction of silane led to a better dispersion and deagglomeration of SiO2 particles, and to the formation of chemical bonds between organic and inorganic constituents, or p‐aramid–poly(vinyl butyral) composites. In this way, the mobility of macromolecules was reduced, which can be seen from the decreasing value of damping factor for the p‐aramid–poly(vinyl butyral) composite. Analysis of the glass transition temperature of the composite with amino‐functionalized silica nanoparticles revealed improved thermal stability in addition to the aforementioned mechanical properties of the tested materials. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
The isothermal crystallization kinetics, the morphology, and the melting behavior of melt‐processed composites of poly(phenylene sulfide) (PPS) with a thermotropic liquid crystalline copolyester, Vectra A950, (TLCP) were studied by differential scanning calorimetry (DSC) and optical microscopy. The crystallization behavior of PPS in PPS/TLCP composites is observed to be highly sensitive to Tc and immiscible TLCP content in the composites. The spherulite growth rate, the overall crystallization rate, and the activation energy of PPS in PPS/TLCP composites are markedly depressed by the presence of TLCP. The analysis of the Avrami kinetic parameters (n and k) indicates that blending of TLCP with PPS causes heterogeneous growth process and nucleation mechanisms. At low Tcs, the PPS crystallization rate is faster than that neat PPS with ≤30 wt% TLCP loading whereas at high Tcs it remains almost unchanged. The analysis of the melting behavior of these composites indicates that the stability of PPS crystals and their reorganization is influenced both by the Tcs and the composite compositions. The sizes and the number of spherulites change a great extent with composite composition with a drop of spherulite rapid growth rate, at constant Tc, with increasing content of TLCP in composites. The analysis based on the Lauritzen‐Hoffmann secondary nucleation theory, using present DSC data, indicates that present data predominantly follow a linear growth trend over a present range of Tcs and PPS crystallization in composites still occurs according to regime II kinetics, whereby multiple surface nuclei form on the substrate with multiple nucleation acts commencing before initially formed growth layer is completed. The fold surface free energy of PPS chains in composites is found higher than that of neat PPS, leading to an average higher work of chain folding and is ascribed to a general development of the PPS chain mobility in the composite melt. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
Because of high wear rate and low thermal deformation temperature, the generalization and application of polytetrafluoroethylene (PTFE) in the field of tribology is restrained to a certain extent. In order to improve the wear resistance and thermal stability of this self‐lubricating polymer, organic montmorillonite (OMMT) nanoparticle reinforced polyethersulfone (PES) and PTFE ternary composites were prepared by the cold molding and vacuum sintering technology. The effects of sodium montmorillonite (Na‐MMT) and OMMT on the microstructures, thermal stabilities and tribological properties of PTFE composites were comparatively studied. The results show that the thermal stability of the PES/PTFE composites is clearly improved by the incorporation of OMMT nanoparticles. Not only the friction coefficients but also the wear rates of OMMT/PES/PTFE composites are less than those of Na‐MMT/PES/PTFE composites under identical tribological tests. Of all these PTFE composites, the PES/PTFE composite containing 10.0 wt% OMMT nanoparticles exhibits the best friction and wear properties (μ = 0.14, k = 5.78 × 10?15 m3 N–1 m?1). This can be attributed to the existence of a polymer multicomponent layer consisting of PTFE, PES and OMMT on the composite surface as well as the formation of uniform PTFE transfer film on the worn surfaces of metal counterparts.  相似文献   

13.
The mechanical and tribological properties of carbon fiber (CF) reinforced polyamide 66 (PA66)/polyphenylene sulfide (PPS) blend composite were studied in this article. It was found that CF reinforcement greatly increases the mechanical properties of PA66/PPS blend. The friction coefficient of the sample decreases with the increase of CF content. When CF content is lower (below 30%), the wear resistance is deteriorated by the addition of CF. However, the loading of higher than 30% CF significantly improves the tribological properties of the blend. The lowest friction coefficient (0.31) and the wear volume (1.05 mm3) were obtained with the PA66/PPS blend containing 30% CF. The transfer film and the worn surface formed by sample during sliding were examined by scanning electron microscopy. The observations revealed that the friction coefficient of PA66/PPS/CF composite depends on the formation and development of a transfer film on the counterface. The abrasive wear caused by ruptured CFs (for lower CF content) and the load bearing ability of CFs (for higher CF content) are the major factors affecting the wear volume. In addition, the improvements of mechanical properties, thermal conductivity, and self‐lubrication of bulk CFs are also contributed to the wear behavior of PA66/PPS/CF composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Introducing nanoparticles onto the surface of carbon fibers (CFs) is a useful method for enhancing the quality of fiber-matrix interface. In this work, a liquid sizing agent containing functionalized silica nanoparticles (SiO2) was well prepared to improve interfacial strength and mechanical properties of composites. In order to enhance the dispersion of SiO2 nanoparticles in sizing agent, SiO2 nanoparticles were chemically grafted with 3-aminopropyltriethoxysilane (APS), and then silanized silica (SiO2-APS) was introduced into the interphase by a conventional sizing process as well. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) confirmed the successful preparation of SiO2-APS. Scanning electron microscopy (SEM) showed that a uniform distribution of SiO2-APS on the fiber surface and the increased surface roughness. The sized fibers (CF/SiO2-APS) exhibited a high surface free energy and good wettability based on a dynamic contact angle testing. Interfacial microstructure and mechanical properties of untreated and sized CFs composites were investigated. Simultaneous enhancements of interlaminar shear strength (ILSS) and impact toughness of CF/SiO2-APS composites were achieved, increasing 44.79% in ILSS and 31.53% in impact toughness compared to those of untreated composites. Moreover, flexural strength and modulus of composites increased by 32.22 and 50.0% according to flexural test. In addition, the hydrothermal aging resistance of CF/SiO2-APS composites has been improved significantly owing to the introduced Si-O-Si bonds at the interface.  相似文献   

15.
The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti‐wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 ? 55%, 55 ? 60%, 40 ? 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43236.  相似文献   

16.
Nanocomposites based on isotactic polypropylene (iPP) and titanium dioxide (TiO2) nanoparticle containing 1–15 vol% (4.6–45.5 wt%) of the nanoparticle were prepared by the melt blending process. The effect of an anhydride‐modified polypropylene as a compatibilizer on dispersion of TiO2 nanoparticles was assessed using SEM. TGA and DSC analysis were performed to study the thermal properties of the nanocomposites. Crystalline structures of iPP in the presence of TiO2 were analyzed by XRD. Mechanical properties of the nanoparticles were measured and a micromechanical analysis was applied to quantify interface interaction between the polymer and particle. SEM results revealed improvement of TiO2 particle dispersion by adding the compatibilizer. It was shown that the thermal stability and crystalline structure of the nanocomposite are significantly affected by the state of particle dispersion. TiO2 nanoparticles were shown to be strong β‐nucleating agents for iPP, especially at concentrations less than 5 vol%. Presence of the β‐structure crystals reduced the elastic modulus and yield strength of the nanocomposites. Micromechanical analysis showed enhanced interaction between organic and inorganic phases of the compatibilized nanocomposites. POLYM. ENG. SCI., 54:874–886, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
The maleic anhydride functionalized graphene oxide (GO-MA) is fabricated by an efficient and solvent-free Diels–Alder reaction. Polyethylene terephthalate (PET)/thermotropic liquid crystal polyester (TLCP), PET/TLCP/GO-MA, PET/TLCP/aminated multi-walled carbon nanotubes (MWCNTs-NH2), and PET/TLCP/GO-MA/MWCNTs-NH2 composite fibers are systematically melt-spun. The structure and compatibilizing effects of GO-MA and MWCNTs-NH2 on the mechanical, thermal, and crystallization properties of the composite fibers are indicated. The non-isothermal crystallization kinetics and X-ray diffraction (XRD) data show that TLCP and nanofillers can change the crystalline morphology of PET. The mechanical properties of the fibers rise with increasing TLCP content. The tensile strength 929 MPa and modulus 17.5 GPa of the fibers with 7 wt% TLCP and 0.25 wt% nanofillers (0.1 wt% GO-MA and 0.15 wt% MWCNTs-NH2) are significantly higher than those with 7 wt% TLCP (tensile strength 622 MPa and modulus 16.1 GPa) and even higher than those with 15% TLCP (tensile strength 836 MPa, and modulus 18.0 GPa). When the GO-MA and MWCNTs-NH2 co-exist, the anti-dripping phenomenon is improved. Therefore, the TLCP, GO, and MWCNTs synergistically strengthens the mechanical properties. This is promising for the industrial fabrication of high-strength fibers.  相似文献   

18.
In this work, a simple and novel method was applied to prepare polymer composites by taking the advantage of melt flow shear force driving orientation of the fillers. By using this method, hexagonal boron nitride/polyethylene (hBN/PE) and hexagonal boron nitride/carbon fibers/polyethylene (hBN/CF/PE) composites were fabricated to be possessed of high thermal conductivity and mechanical properties. A high thermal conductivity of 3.11 W/mK was realized in the composite containing 35 wt% hBN and 5 wt% CF, which was over 1,200% higher than that of unfilled PE matrix. Under this component, the compressive strength and modulus of hBN/CF/PE composite were determined to be 30.1 and 870.9 MPa, respectively, which were far higher than that of unfilled PE accordingly. The bending performance was also somewhat enhanced. Meanwhile, the bulk resistivity of the composite material reached 2.55 × 1011 Ω·cm, which was basically the same as that of pure PE. The novel composites with high thermal conductivity, excellent mechanical properties, and controllable electrical insulation could be a potential thermal management material for electrical and electronics industries.  相似文献   

19.
Nylon 1010 composites filled with two types of surface‐modified SiO2 nanoparticles (RNS and DNS) were prepared by melt blending. The mechanical properties of the composites were evaluated. The influences of the surface‐modified nano‐SiO2 on the thermal stability, crystallization behavior, and microstructure of nylon 1010 were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), X‐ray diffraction, and transmission electron microscopy. And the interfacial interactions between the fillers and polymer matrix were examined using a Fourier transformation infrared spectrometer. It was found that the addition of the surface‐modified nano‐SiO2 had distinct influences on the thermal stability, mechanical properties, and crystallization behavior of nylon 1010. RNS and DNS as the fillers had different effects on the mechanical properties of nylon 1010. The composites filled with RNS at a mass fraction of 1–5% showed increased break elongation, Young's modulus, and impact strength but almost unchanged or even slightly lowered tensile strength than the unfilled matrix. The DNS‐filled nylon 1010 composites had obviously decreased tensile strength, whereas the incorporation of DNS also contributed to the increase in the Young's modulus of nylon 1010, but less effective than RNS. Moreover, the nylon 1010 composites had better thermal stability than the neat polymer matrix, and the composites filled with RNS were more thermally stable than those filled with DNS. The difference in the crystallinity of neat nylon 1010 and its composites filled with RNS and DNS was subtle, although the surface‐modified nano‐SiO2 could induce or/and stabilize the γ‐crystalline formation of nylon 1010. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Glass fiber filled thermotropic liquid crystalline polymer (gLCP)/silica composites were prepared by melt compounding. The total torque of the gLCP/silica composites decreased and the melt flow index increased with increasing silica content, which indicates that the fumed silica nanoparticles act as good processing aids and enhance the processing behavior of gLCP/silica composites. The rheological properties of the gLCP/silica composites were significantly dependent on the silica content. The complex viscosity and storage modulus (G′) of the gLCP/silica composites decreased with increasing silica content. This was attributed to the ability of the silica nanoparticles to break the glass fiber–glass fiber interactions in the gLCPs. The storage modulus and loss modulus (G″) of the gLCP/silica composites increased with increasing frequency, and the increment was more significant at low frequency. Incorporation of a small quantity of silica nanoparticles improved the thermal stability and mechanical properties of gLCP/silica composites. However, at high silica nanoparticle content the mechanical properties of gLCP/silica composites decreased because of the aggregation of silica nanoparticles. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号