首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wonjoo Lee  R.M. Briber 《Polymer》2010,51(13):2872-2878
Poly((2-dimethylamino)ethyl methacrylate) with 60,000 g/mol and a narrow polydispersity (1.12) was synthesized using group transfer polymerization in order to investigate the structure of poly((2-dimethylamino)ethyl methacrylate)/sodium dodecylsufate complexes in water. The synthesized polymer chain conformation in water was studied as a function of deuterated sodium dodecylsulfate concentration using small angle neutron scattering. We found three transitions of the poly((2-dimethylamino)ethyl methacrylate) chain conformation induced by the added deuterated sodium dodecylsulfate. The transitions resulted from interactions between the polymer and the surfactant, so that micelles are formed along the polymer backbone above the critical aggregation concentration. The structure of micelles in a poly((2-dimethylamino)ethyl methacrylate)/deuterated sodium dodecylsulfate solution was analyzed through model fitting of the small angle neutron scattering data measured at the condition where the poly((2-dimethylamino)ethyl methacrylate) was contrast-matched with a mixture of 80% H2O and 20% D2O.  相似文献   

2.
We report the results of systems based on polystyrene‐poly(ethyl acrylate) (PEA) diblocks, which self‐assemble in aqueous solutions to form spherical micelles. Previous work has shown that the rheological properties of these solutions, in particular the gel–liquid transition, can be tuned through the use of a simple hydrolysis reaction to convert PEA to poly(acrylic acid) (PAA). We studied the effect of the extent of hydrolysis on the self‐assembly and micellar interactions. Small‐angle neutron scattering (SANS) spectra were fit with a variety of models to determine the micelle structure. As more PEA was converted to PAA (i.e., as the corona became more charged and more hydrophilic), the micellar aggregation number decreased, analogous to observations of other polymeric micelles. This effect could impact the gel–liquid transition and rheology in this system and in similar micellar block copolymer gels. Finally, our SANS spectra qualitatively agreed with predictions for attractive colloidal glasses, confirming the idea that the elasticity of these gels arises from the jamming of micelles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 490–497, 2004  相似文献   

3.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Copolymers of poly[2‐(dimethylamino)ethyl methacrylate]–poly(butylene succinate)–poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA–PBS–PDMAEMA, PDBD) were synthesized through a chain‐extension reaction. The thermal properties characterized using differential scanning calorimetry showed that the introduction of PDMAEMA chains slightly decreased the melting temperature of PBS. The water contact angle of PDBD copolymer films with media of various pH decreased with a decrease of pH. This should be ascribed to the conformational transition of PDMAEMA blocks from a compact coil to an expanding shape in accordance with the variation of the pH of the surroundings. The results of dynamic light scattering and scanning electron microscopy revealed that PDBD copolymers could form spherical micelles with small particle size and narrow particle size distribution. Furthermore, drug loading (loading content, ca 10%; encapsulation efficiency, ca 60%) and release experiments were conducted using doxorubicin as a hydrophobic model drug. The results of release experiments of copolymer nanomicelles showed that these micelles had pH‐responsive properties. © 2018 Society of Chemical Industry  相似文献   

5.
Micellar solubilization has been used extensively for the dissolution of sparingly soluble drugs for effective drug delivery. Apart from improving the solubility and bioavailability, micelles can help reduce toxicity and improve permeability in the system. In this article, solubilization of a well-known antibiotic, sulfamethazine (SMZ) upon micellization, is studied by employing various spectroscopic and scattering techniques like, ultraviolet–visible, fluorescence, small angle neutron scattering (SANS), and zeta potential (ZP) studies. The size(s) and charge(s) of the micelles were monitored by SANS and ZP. A positively charged/cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and a negatively charged/anionic surfactant, sodium dodecyl sulfate (SDS) are used for micelle formation. Regardless of the surfactant type, the solubility of SMZ increases linearly with the increase in the surfactant concentration, as a result of association between the drug and micelles. However, the solubility of SMZ is found to be better with CTAB than SDS. Upon interaction with SMZ, we observed that the critical micelle concentration of CTAB occurred at a lower concentration than that of SDS surfactant. As fitted in the ellipsoidal core–shell model, SANS results also show the formation of charged micelles. This comparative study can help us to select an appropriate medium for SMZ solubilization to improve selective drug delivery in biomedical applications.  相似文献   

6.
Uma Chatterjee 《Polymer》2005,46(24):10699-10708
Amphiphilic di- and tri-block copolymers of poly(methyl methacrylate) (PMMA) and poly(2-dimethylamino)ethyl methacrylate (PDMAEMA) have been synthesized by atom transfer radical polymerization (ATRP) at ambient temperature (35 °C) in the environment-friendly solvent, aqueous ethanol (water 16 vol%) using CuCl/o-phenanthroline as the catalyst. The PDMAEMA blocks are contaminated with ethyl methacrylate (EMA) residues to the extent of 1-2 mol% of DMAEMA depending on the length of the PDMAEMA block. The EMA forms through the autocatalyzed ethanolysis of the DMAEMA monomer and undergoes random copolymerization with the latter. The rate of ethanolysis is unexpectedly greater in the aqueous ethanol than in neat ethanol, which has been attributed to the higher polarity of the former than of the latter. In contrast to the ethanolysis no hydrolysis of DMAEMA in the aqueous ethanol medium could be detected for 133 h. The block copolymers form micelles in water. Their solubility and CMC in neutral water have been studied. Dynamic light scattering (DLS) studies reveal that for a fixed degree of polymerization (DP) of the PMMA block the hydrodynamic diameter of the micelles in methanolic water (water 95 vol%) increases at a faster rate with the DP of the PDMAEMA block when it is much greater than that of the PMMA block compared to when it is less than or close to that of the latter.  相似文献   

7.
Softwood kraft lignin (SKL) pH-responsive hydrogels were prepared through controlled aggregation using poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and poly(2-(dimethylamino)ethyl methacrylate)-block-poly(ethylene oxide)-block-poly(2-(dimethylamino) ethyl methacrylate) triblock copolymer (PDMAEMA-co-PEO-co-PDMAEMA). At low SKL concentrations, the SKL/polymer (PDMAEMA and PDMAEMA-co-PEO-co-PDMAEMA) aqueous solutions exhibited pH-dependent aggregation arising from the formation of strong intermolecular hydrogen bonds. Decreasing the SKL/polymer weight ratio resulted in the pH-reversible soluble-insoluble (S-I) transition to become a soluble-insoluble-soluble (S-I-S) transition, which upon increasing the SKL concentration resulted in hydrogel formation. Under neutral conditions relatively strong hydrogels were formed, which upon either increasing or decreasing solution pH resulted in the hydrogels collapsing to liquid solutions, but were readily reformed upon neutralization. The effects of polymer structure, concentration, and intermolecular interactions on solution behavior and gelation are thoroughly discussed.  相似文献   

8.
Summary The behaviour of poly(ethyl methacrylate) (PEMA) in the solvent(1)/precipitant(2) ethyl acetate(1)/n-propanol(2) binary mixture is studied by laser light scattering, differential refractometry and viscometry. A preferential adsorption of n-propanol is observed in all range of compositions studied, as well as an inversion in the thermodinamic quality of the solvent mixture with the temperature.  相似文献   

9.
The effects of alkali halides on the nonoxidative thermal degradations of poly(methyl methacrylate) and poly(2-hydroxy ethyl methacrylate) are described. The magnitudes of the effects of various alkali halides on polymer thermal degradation were found to depend on the salt and the polymer. Mass spectrometric analysis of volatiles evolved during polymer degradation detected alkyl halides formed by reactions between the salts and polymers. Compared to poly(methyl methacrylate), more alkyl halide was evolved from samples containing alkali halides and poly(2-hydroxy ethyl methacrylate). To varying degrees, salts also catalyzed ester decomposition reactions for this polymer. Infrared spectroscopic analysis results showed that carboxylate salts, carbonate, and carbon monoxide were formed by heating polymer/salt mixtures. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Jan M.D. Heijl 《Polymer》2004,45(20):6771-6778
Multi-responsive microgels based on poly(2-(N,N-dimethylamino)ethyl methacrylate) were developed and their properties were investigated. The primary goal of this research was to speed up the stimulus-response time of the hydrogels to a level usable for actuator applications, by reducing the diffusion distance of water. The gels were prepared by a UV induced photodimerization of a copolymer of 2-(dimethylamino)ethyl methacrylate and 4-cinnamoyl-phenyl methacrylate. Patterning studies showed that these materials can be used as photo-resist materials with high resolution at short exposure times. They showed lower critical solution temperature behavior in water, as well as pH dependent solubility and swelling ratios. While 1 mm thick gels showed response times to temperature and pH-changes of several hours, Si-supported microgels of 300 nm thickness had response times in the range of only a few seconds. The copolymer was prepared by free radical copolymerization, and the reactivity ratios were determined with the extended Kelen Tudos method. Spin-coating of this copolymer on Si supports and subsequent UV-irradiation yielded microgels of variable thickness (200 nm-15 μm), which was determined by confocal scanning laser microscopy. Surface plasmon resonance spectroscopy measurements demonstrated the fast, stimuli-responsive swelling behavior, while differential scanning calorimetry gave insight into the morphology of the networks.  相似文献   

11.
The rheological behavior of aqueous micellar solutions of a triblock copolymer, bearing two small hydrophobic end-blocks of polybutadiene and a large hydrophilic middle block of poly(sodium methacrylate), was studied in the presence of a cationic (dodecyl trimethyl ammonium bromide) or an anionic (sodium dodecyl sulfate) surfactant. Depending on the concentration and the charges of the interacting (with the water soluble middle block) surfactants, the rheological behavior of the triblock copolymer micelles (which resemble compact spheres, based on scattering studies) can be altered dramatically. The surfactant additives can either solidify a liquid-like system (low triblock concentration, dominated by loops) or alternatively liquefy a gel (high triblock concentration, dominated by bridges). Apparently, the hydrophobic tails of the surfactants prefer to join the hydrophobic polybutadiene cores of the triblocks, whereas by increasing the surfactant concentration the core functionality can be changed. In addition interactions between the oppositely charged hydrophilic surfactant heads and middle blocks can yield complexes producing new hydrophobic domains. These findings suggest possibilities for controlling complex fluid rheology.  相似文献   

12.
Ultra-thin films of cationic amphiphilic block and statistical copolymers were applied on silica surfaces from aqueous solutions through electrostatic interactions, and the resulting modification in the wettability of the surfaces was studied. A copolymer series from 2-(dimethylamino)ethyl methacrylate with methyl methacrylate and butyl methacrylate was polymerized by ATRP. Subsequently, the conformation of the polymers in aqueous solutions was studied by surface tension measurements, dynamic light scattering, 1H NMR and cryogenic transmission electron microscopy. Unimeric conformation, equilibrium micelles or frozen micellar structures were observed, depending on polymer composition and the ionic strength of the solution. The polymers were applied on silica from aqueous solutions by either spin coating or adsorption. The formed ultra-thin film surfaces were studied by AFM and water contact angle measurements. The spin-coated surfaces were highly hydrophilic with rapidly dropping contact angles, whereas the surfaces prepared by adsorption had stable water contact angles between 30-60°, depending on polymer. The difference between the spin-coated and adsorbed surfaces is explained by the formation of a monolayer in the adsorbed surfaces.  相似文献   

13.
A new amphiphilic 4-arm star-shaped poly(D,L-lactide)/poly(ethyl ethylene phosphate) (ssPLA-b-PEEP) block copolymer was synthesized by ring-opening polymerization of ethyl ethylene phosphate (EEP) with hydroxyl terminated 4-arm star-shaped poly(D,L-lactide) (ssPLA) as a macroinitiator, which was prepared by ring-opening polymerization of D,L-lactide (LA) initiated by pentaerythrite using stannous octoate as catalyst. The structures of the block copolymers were confirmed by IR, 1H-NMR and GPC analysis. Fluorescence measurements were applied to determine the critical micelle concentration (CMC) of the copolymer micelle solutions. The diameter and the distribution of micelles were characterized by dynamic light scattering (DLS) and the shape was perceived by transmission electron microscopy (TEM). The results indicated those copolymers formed nano-micelles in aqueous solution with hydrophobic poly(D,L-lactide) core and hydrophilic poly(ethyl ethylene phosphate) shell. The CMC of the copolymer solutions increased with the increments of the proportion of PEEP segments. TEM images demonstrated that all micelles were spherical.  相似文献   

14.
Ying Qian Hu  Bong Sup Kim 《Polymer》2007,48(12):3437-3443
The polymerization of 2-(diisopropylamino)ethyl methacrylate (DPA) by RAFT mechanism in the presence of 4-cyanopentanoic acid dithiobenzoate in 1,4-dioxane was studied. The DPA homopolymer was employed as a macro chain transfer agent to synthesize pH-sensitive amphiphilic block copolymers using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the hydrophilic block. 1H NMR and GPC measurements confirmed the successful synthesis of these copolymers. Potentiometric titrations and fluorescence experiments proved that the copolymers underwent a sharp transition from unimers to micelles at a pH of ∼6.7 in phosphate buffered saline solutions. It was found that the hydrophilic/hydrophobic balance of these block copolymers had no apparent effect on their pH-induced micellization behaviors. The DLS investigation revealed that the micelles have a mean hydrodynamic diameter below 60 nm with a narrow size distribution.  相似文献   

15.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
A poly(perfluoroalkylethyl methacrylate) and a series of poly(n-alkyl methacrylate)s such as poly(methyl methacrylate), poly(ethyl methacrylate), and poly(n-butyl methacrylate) were prepared and used to investigate the surface properties of polymer mixtures containing a fluorinated homopolymer and a nonfluorinated homopolymer and the effect of the side-chain length of poly(n-alkyl methacrylate) on the surface free energy for the polymer mixtures. Contact angles were measured for the surfaces of polymer mixtures by varying the concentration of poly(perfluoroalkylethyl methacrylate). From the contact angle data, it can be inferred that most of the poly(perfluoroalkylethyl methacrylate) added to poly(n-alkyl methacrylate)s is located in the outermost layer of polymer-mixture surface. Surface free energies for the outermost surfaces of polymer mixtures were calculated from the contact angle data using Owen and Wendt's equation. The decrease in the surface free energy for the polymer mixture with the poly(perfluoroalkylethyl methacrylate) addition is more pronounced as the side-chain length of poly(n-alkyl methacrylate) decreases. Due to the steric effect of the side chain of poly(n-alkyl methacrylate), the arrangement of the perfluoroalkylethyl group of poly(perfluoroalkylethyl methacrylate) to the air side is considerably hindered. The ESCA analysis of atomic compositions of the surface for the polymer mixture verified that poly(perfluoroalkylethyl methacrylate) is preferentially arranged and concentrates at the polymer mixture–air interface. The results of functional group compositions obtained by ESCA showed that the functional group composition of  CF3 for the outermost layer has a more important effect on the surface free energy than that of  CF2 and confirmed the hindrance of the arrangement of perfluoroalkylethyl group to the air side by the side chain of poly(n-alkyl methacrylate). © 1994 John Wiley & Sons, Inc.  相似文献   

17.
超临界二氧化碳中反胶束体系的研究方法   总被引:1,自引:0,他引:1  
在超临界CO2中加入合适的表面活性剂后形成反胶束体系,是一种提高极性、亲水性以及高相对分子质量物质在超临界CO2中溶解性的有效方法。目前对超临界CO2中反胶束的研究主要集中在对其结构信息的研究,就反胶束结构分析测试以及反胶束模型模拟计算的常用方法进行了简要介绍,如动态光散射法(DLS)、小角中子散射法(SANS)、小角X光散射法(SAXS)、核磁共振光谱法(NMR)、Monte Carlo格子模拟法等方法。  相似文献   

18.
Novel pH‐ and temperature‐responsive chitosan‐graft‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (chitosan‐g‐PDMAEMA) copolymers were successfully synthesized by homogeneous atom transfer radical polymerization (ATRP) under mild conditions. Chitosan macroinitiator was prepared by phthaloylation of amino groups of chitosan and subsequent acylation of hydroxyl groups of chitosan with 2‐bromoisobutyryl bromide. The copolymers were obtained by ATRP of 2‐(N,N‐dimethylamino)ethyl methacrylate and they can self‐assemble into stable micelles in water. Hybrid micelles with a PDMAEMA corona incorporating gold nanoparticles (Au NPs) were prepared in situ via the reduction of HAuCl4 with NaBH4. The pH and temperature responses of the copolymer micelles and hybrid micelles were characterized using UV‐visible spectroscopy and dynamic laser light scattering. The morphology of the micelles was observed using transmission electron microscopy and atomic force microscopy. The PDMAEMA corona of the micelles acts as the ‘nanoreactor’ and the ‘anchor’ for the in situ formation and stabilization of Au NPs. Therefore, the spatial distribution of Au NPs within the micelles can be tuned by varying the temperature and pH value. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Semifluorinated block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(fluorooctyl methacrylates) (PFOMA) were prepared using group transfer polymerisation via sequential monomer addition. Wide ranges of copolymers were obtained with good control over both molecular weight and composition by adjusting the monomers/initiator ratio. The micellar characteristics of the copolymers in water and chloroform were investigated by quasi-elastic light scattering and transmission electron microscopy. The size and morphologies of micelles were greatly influenced by copolymer composition, pH, and temperature. In addition, the solubility of copolymers and the formation of water-in-carbon dioxide (W/C) microemulsions were described in terms of the cloud points. The block copolymers exhibited the excellent ability of stabilizing W/C microemulsions.  相似文献   

20.
Micelles were prepared from a mixture of NH2‐terminated poly(l ‐lactide) and poly(d ,l ‐lactide)‐block‐poly(ethylene oxide) (molar ratio of 3:7). The micelles were complexed with bilayer lipid vesicles (liposomes) composed of anionic palmitoyloleoylphosphatidylserine and zwitterionic dioleoylphosphatidylcholine in a molar ratio of 3:7. The micelles and micelle–liposome complexes were characterized using dynamic light scattering, laser electrophoresis, fluorimetry, transmission electron microscopy, enzymatic hydrolysis and cell viability with the following main findings. (i) Average diameter of micelle cores was found to be 70 ± 10 nm. (ii) Each micelle carried ca 20 000 amino groups. (iii) In a pH 7 solution the impact of the protonated NH2 groups in the total surface of micelles was negligible owing to their screening by bulky poly(ethylene oxide) blocks. (iv) The micelles were stable in slightly acidic and neutral aqueous solutions, but aggregated in slightly alkaline solutions. (v) The micelles showed no cytotoxicity up to 0.04 mg mL?1 concentration (the maximum concentration in the experiment). (vi) Each micelle adsorbed ca 30 anionic liposomes loaded with the antitumor antibiotic doxorubicin; the liposomes retained their integrity upon binding with micelles. (vii) The initial micelles and the micelle–liposome complexes showed two‐week stability to enzymatic hydrolysis. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号