首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long Zhang 《Carbon》2010,48(8):2367-10462
The synthesis of few-layered graphene sheets with controlled number of layers (3-4) on a large scale was developed using chemical exfoliation by simply controlling the oxidation and exfoliation procedure. The obtained Few-layered Graphene Oxide (FGO) was characterized by atomic force microscopy, X-ray diffraction, thermal gravimetric analysis and Ultraviolet-visible spectroscopy. It is found that the FGO, which contains less functional groups than single-layered graphene oxide (GO), also has excellent water dispersion. Moreover, after reduction treatments under the same conditions as that used for GO, reduced FGO show a much better electrical conductivity of 108 S/cm, two-orders higher than reduced GO.  相似文献   

2.
《Ceramics International》2016,42(12):14094-14099
The effect of graphene concentration on the photovoltaic and UV detector applications of ZnS/graphene nanocomposites was investigated. The nanocomposites were synthesized by a green, cost-effective, and simple co-precipitation method with different graphene concentrations (5, 10, and 15 wt%) using L-cysteine amino acid as a surfactant and graphene oxide (GO) powder as a graphene source. Transmission electron microscopy (TEM) images showed that the ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in ZnS diameter size. The results of X-ray diffraction (XRD) patterns, Raman, and Fourier transform infrared (FTIR) spectroscopy indicated that the GO sheets were changed into reduced graphene oxide (rGO) during synthesis process. Therefore, L-cysteine amino acid played its role as a reducing agent to reduce the GO. Photovoltaic measurements showed that the graphene caused to increase the efficiency of solar-cell application of ZnS/rGO nanocomposites. In addition, our observation showed that the nanocomposites were suitable as ultraviolet (UV) detectors and graphene concentration increased the responsibility of the detectors.  相似文献   

3.
A facile, eco-friendly and economical approach was demonstrated for the synthesis of gold-decorated reduced graphene oxide nanocomposites (rGO–Aunano) using beer as a reducing agent via a hydrothermal method. The phenolic compounds of beer play a key role in the reduction of graphene oxide and the gold precursor. The obtained rGO–Aunano was characterized by X-ray diffraction, UV–vis absorption spectroscopy, electron microscopy, atomic force microscopy and the electrochemical impedance spectroscopy. Analysis revealed that the electron-transfer resistance of rGO–Aunano/GCE was much lower than that of the GCE and GO/GCE. The proposed nanocomposites have excellent electrocatalytical properties for catalytic reduction of O2 in solution.  相似文献   

4.
In this article, the effect of the addition of graphene oxide (GO) and reduced graphene oxide (rGO) on the mechanical properties, thermal stability, and electrical conductivity of polyvinyl alcohol (PVA) has been investigated. Different weight percentages of nanofillers ranging from 0.5 to 5 wt% have been combined with PVA. The ultrasonic technique has been applied to disperse nanofillers in the PVA solution. The nanocomposite films have been prepared via solution casting technique and the dispersion of nanofillers into the PVA has been studied through optical microscopy. The microstructure, crystallization behavior, and interfacial interaction were characterized through X-ray diffraction and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) and thermogravimetric analysis have been applied to study the thermal properties of the prepared nanocomposites. The DSC results revealed that the crystallization temperature and melting temperature were enhanced in the presence of GO nanofiller. Besides, the tensile strength at break was improved along with the addition of GO; however, elongation at break for PVA/GO and PVA/rGO was diminished. Moreover, all specimens showed insulating behavior and the only sample was electrically conducting, which contain a high amount of rGO (5 wt%).  相似文献   

5.
Polypyrrole (PPy)/graphene (GR) nanocomposites were successfully prepared via in-situ polymerization of graphite oxide (GO) and pyrrole monomer followed by chemical reduction using hydrazine monohydrate. The large surface area and high aspect ratio of the in-situ generated graphene played an important role in justifying the noticeable improvements in electrical conductivity of the prepared composites via chemical reduction. X-ray photoelectron spectroscopy (XPS) analysis revealed the removal of oxygen functionality from the GO surface after reduction and the bonding structure of the reduced composites were further determined from FTIR and Raman spectroscopic analysis. For PPy/GR composite, intensity ratio between D band and G band was high (∼1.17), indicating an increased number of c-sp2 domains that were formed during the reduction process. A reasonable improvement in thermal stability of the reduced composite was also observed. Transmission electron microscopy (TEM) observations indicated the dispersion of the graphene nanosheets within the PPy matrix.  相似文献   

6.
Ates  Murat  Yildirim  Murat 《Polymer Bulletin》2020,77(5):2285-2307
Polymer Bulletin - In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium...  相似文献   

7.
Oxidation debris (OD) and graphene oxide (GO) before and after OD removal were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectroscopy, X-ray diffraction, transmission electron microscopy and potentiometric titration, respectively. OD removal decreased GO absorption intensity in UV/Vis spectra, caused changes in peak position and absorption intensity in FTIR spectra, and resulted in the decrease of ID/IG in Raman spectra. OD was amorphous and had higher content of acidic groups than purified GO. OD contributed 10–25% of overall surface charge density to unpurified GO in spite of small amount (ca. 1% mass). OD removal decreased significantly GO dispersibility in aqueous solution, but increased obviously the electrical conductivity of reduced graphene oxide (rGO) and the apparent density of compacted rGO. The removal of OD was necessary because of its striking effects on both GO spectroscopic and macroscopic properties. Batch desorption in NaOH solution was recommended for OD removal from as-prepared graphite oxide because of slow OD desorption kinetics.  相似文献   

8.
Carbon nanostructures are widely used as fillers to tailor the mechanical, thermal, barrier, and electrical properties of polymeric matrices employed for a wide range of applications. Reduced graphene oxide (rGO), a carbon nanostructure from the graphene derivatives family, has been incorporated in composite materials due to its remarkable electrical conductivity, mechanical strength capacity, and low cost. Graphene oxide (GO) is typically synthesized by the improved Hummers’ method and then chemically reduced to obtain rGO. However, the chemical reduction commonly uses toxic reducing agents, such as hydrazine, being environmentally unfriendly and limiting the final application of composites. Therefore, green chemical reducing agents and synthesis methods of carbon nanostructures should be employed. This paper reviews the state of the art regarding the green chemical reduction of graphene oxide reported in the last 3 years. Moreover, alternative graphitic nanostructures, such as carbons derived from biomass and carbon nanostructures supported on clays, are pointed as eco-friendly and sustainable carbonaceous additives to engineering polymer properties in composites. Finally, the application of these carbon nanostructures in polymer composites is briefly overviewed.  相似文献   

9.
A low-cost noble metal-free substrate comprised of annealed graphene oxide (GO)/ZnO composites is prepared to demonstrate an efficient chemical surface-enhanced Raman scattering effect. A high enhancement factor of about 104, better than those reported for reduced GO (rGO)/Au and GO/Ag composites, is mainly attributed to the unusually abundant oxygen-containing groups generated on surface of rGO by coupling with ZnO nanoparticles at moderate temperature. High-resolution transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy are employed to examine the evolution of ZnO as well as reduction and functionalization of GO after different heat treatments.  相似文献   

10.
《Ceramics International》2020,46(5):5610-5622
A simple with cost-effective method in the production and fabrication of graphene-based rubber nanocomposites as electrode materials is still remain a global challenge. In this work, we proposed one- and two-step approaches to fabricate an exfoliated graphene oxide (GO) as nanofiller in three different types of rubber latex polymer, namely, low ammonia natural rubber latex (NRL), radiation vulcanized NRL (RVNRL), and epoxy NRL 25 (ENRL 25). The electrical conductivity and capacitive behavior of nanocomposite samples were investigated under a four-point probe and cyclic voltammetry measurements, respectively. Meanwhile, the morphological properties were observed using field emission scanning electron microscopy, energy dispersive X-ray, optical polarization microscope, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The thermal stabilities of the nanocomposites were also investigated by thermogravimetric analysis. Among all, the GO/RVNRL polymer nanocomposite samples performed a better homogeneity with an improved electrical conductivity (~8.6 × 10−4 Scm−1) as compared with the GO/ENRL 25 (~3.1 × 10−4 Scm−1) and GO/NRL (~2.6 × 10−4 Scm−1) polymer nanocomposite samples. In addition, the GO/RVNRL polymer nanocomposite electrodes showed acceptable specific capacitance (5 Fg-1). The successfully fabricated conductive GO-based rubber nanocomposites are suitable for new supercapacitor electrodes.  相似文献   

11.
Polyviologen (PV)–reduced graphene oxide (rGO) nanocomposite films were fabricated by simple, one-step reductive electropolymerization of cyanopyridinium based precursor monomer (CNP) in an aqueous dispersion of graphene oxide (GO). Since the polymer formation and reduction of graphene oxide occurs within the same potential window, electrocodeposition method was preferred for obtaining nanostructured PV–rGO films. Cyclic voltammetry experiments of PV–rGO displayed two well resolved, reversible one-electron redox processes typical of viologen. Being a redox polymer, incorporation of rGO further enhances the electroactivity of the PV in the composite films. Vibrational spectral analysis with surface characterization revealed structural changes after composite formation along with subsequent reduction of GO within the polymer matrix. The PV–rGO nanostructured film exhibits a high-contrast electrochromism with low driving voltage induced striking color changes from transparent (0 V) to purple (−0.6 V), high coloration efficiency, fast response times and better cycling stability compared to a pristine PV film. This improved performance can be attributed to the high stability of the electrochrome in the composite assembly induced by electrostatically driven non-covalent interactions between redox PV2+ and negatively charged rGO, improved electrical conductivity and enlarged surface area accessed through reinforced nanostructured graphene sheets for tethering PV molecules.  相似文献   

12.
Among many methods to synthesize graphene, solution-based processing provides many advantages owing to its low cost, high productivity, chemical versatility, and scalability. In particular, graphene oxide (GO) is one of the most promising nanocarbons that enable the incorporation of graphene and related materials into bulk materials and nanocomposites. GO has hydrophilic nature that enables straightforward dispersion in aqueous solution by sonication, but GO show poor dispersibility in common organic solvents, which prevent much wider applications such as solution-mixing polymer nanocomposites. Here we prepared highly soluble, functionalized GO in both aqueous and non-aqueous solvents. This was achieved by reacting polyetheramine consisting of amphiphilic components, e.g., polypropylene oxide and polyethylene oxide, with carboxylic acid groups at GO edges. Moreover, the reduced GO (rGO) was also highly dispersible in aqueous solution as well as non-aqueous solutions. These functionalized GO and rGO can be used for many solution-processed graphene composites.  相似文献   

13.
通过改性二氧化锰和氧化石墨烯片之间的静电自组装制备了层状的rGO/MnO2复合纳米材料。通过XRD分析材料的晶体结构,用扫描电镜观察材料的微观表面形貌。这种材料用来研究其电化学电容性能,结果表明这种纳米复合材料显示出很好的电容性能(在0.2 A/g的电流密度下可达246 F/g)。此外,在2 A/g的电流密度下循环1000次后容量保持率为91%。材料的性能提升是因为复合材料中二氧化锰纳米棒和石墨烯片层很好的贴合,而石墨烯片的加入也大大提高了材料的导电性。  相似文献   

14.
Songfeng Pei  Hui-Ming Cheng 《Carbon》2012,50(9):3210-3228
Graphene has attracted great interest for its excellent mechanical, electrical, thermal and optical properties. It can be produced by micro-mechanical exfoliation of highly ordered pyrolytic graphite, epitaxial growth, chemical vapor deposition, and the reduction of graphene oxide (GO). The first three methods can produce graphene with a relatively perfect structure and excellent properties, while in comparison, GO has two important characteristics: (1) it can be produced using inexpensive graphite as raw material by cost-effective chemical methods with a high yield, and (2) it is highly hydrophilic and can form stable aqueous colloids to facilitate the assembly of macroscopic structures by simple and cheap solution processes, both of which are important to the large-scale uses of graphene. A key topic in the research and applications of GO is the reduction, which partly restores the structure and properties of graphene. Different reduction processes result in different properties of reduced GO (rGO), which in turn affect the final performance of materials or devices composed of rGO. In this contribution, we review the state-of-art status of the reduction of GO on both techniques and mechanisms. The development in this field will speed the applications of graphene.  相似文献   

15.
The graphene oxide (GO) was prepared by sonication‐induced exfoliation from graphite oxide, which was produced by oxidation from graphite flakes with a modified Hummer's method. The GO was then treated by hydrazine to obtain reduced graphene oxide (rGO). On the basis of the characterization results, the GO was successfully reduced to rGO. Acrylonitrile–butadiene rubber (NBR)–GO and NBR–rGO composites were prepared via a solution‐mixing method, and their various physical properties were investigated. The NBR–rGO nanocomposite demonstrated a higher curing efficiency and a change in torque compared to the gum and NBR–GO compounds. This agreed well with the crosslinking density measured by swelling. The results manifested in the high hardness (Shore A) and high tensile modulus of the NBR–rGO compounds. For instance, the tensile modulus at a 0.1‐phr rGO loading greatly increased above 83, 114, and 116% at strain levels of 50, 100, and 200%, respectively, compared to the 0.1‐phr GO loaded sample. The observed enhancement was highly attributed to a homogeneous dispersion of rGO within the NBR matrix; this was confirmed by scanning electron microscopy and transmission electron microscopy analysis. However, in view of the high ultimate tensile strength, the NBR–GO compounds exhibited an advantage; this was presumably due to strong hydrogen bonding or polar–polar interactions between the NBR and GO sheets. This interfacial interaction between GO and NBR was supported by the marginal increase in the glass‐transition temperatures of the NBR compounds containing fillers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42457.  相似文献   

16.
A rapid and efficient post-polymerization functionalization of poly(urea-co-urethane) (PUU) onto the graphene oxide (GO) nanosheets has been developed to produce super-acidic polymer/GO hybrid nanosheets. Thus, the surface of GO nanosheets were functionalized with 3-(triethoxysilyl)propyl isocyanate (TESPIC) from hydroxyl groups to yield isocyanate functionalized graphene oxide nanosheets. Then, sulfonated polymer/GO hybrid nanosheets were prepared by condensation polymerization of isocyanate-terminated pre-polyurea onto isocyanate functionalized graphene oxide nanosheets through the formation of carbamate bonds. FTIR and TGA results indicated that TESPIC modifier agent and poly(urea-co-urethane) were successfully grafted onto the GO nanosheets. The grafting efficiency of poly(urea-co-urethane) polymer onto the GO nanosheets was estimated from TGA thermograms to be 205.9%. Also, sulfonated polymer/GO hybrid nanosheets showed a proton conductivity as high as 3.7 mS cm?1. Modification and morphology of GO nanosheets before and after modification processes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).  相似文献   

17.
《Ceramics International》2019,45(11):13923-13933
In the present study, a simple UV-assisted sonication method is used for the development of bismuth sulfide (Bi2S3) nanostructures on graphene sheets. X-ray diffraction (XRD) and Raman results indicated that graphene oxide (GO) layers are reduced. Field emission scanning electron microscopy (FESEM) images also indicated that Bi2S3 particles without rGO sheets are agglomerated. In comparison, when adding these sheets, the particles are uniformly spread (decorated) and their size is reduced significantly due to the incorporation of rGO sheets. UV–Vis studies reveal that the band gap in Bi2S3/rGO nanocomposites compared with Bi2S3 has a shift toward shorter wavelengths, suggesting some changes in the electronic band structure of Bi2S3 due to the existence of rGO sheets. Photoluminescence (PL) analysis indicated emission bands in infrared and visible regions resulting from the band edge emission and crystal defects in the samples, respectively. The electrical investigations showed reduced recombination of photogenerated carriers in the nanocomposites. Moreover, the results indicated that the concentration of rGO is an important factor in determining the optoelectrical behavior of these devices.  相似文献   

18.
Asian red ginseng was used for green reduction of chemically exfoliated graphene oxide (GO) into reduced graphene oxide (rGO). The reduction level and electrical conductivity of the ginseng-rGO sheets were comparable to those of hydrazine-rGO ones. Reduction by ginseng resulted in repairing the sp2 graphitic structure of the rGO, while hydrazine-rGO showed more defects and/or smaller aromatic domains. The ginseng-rGO sheets presented a better stability against aggregation than the hydrazine-rGO ones in an aqueous suspension. Whilst the hydrophobic hydrazine-rGO films exhibited no toxicity against human neural stem cells (hNSCs), the hydrophilic GO and ginseng-rGO films (as more biocompatible films) showed proliferation of the stem cells after 3 days. On the other hand, the hydrazine-rGO and especially the ginseng-rGO films exhibited more differentiation of hNSCs into neurons (rather than glia) than the GO film, after 3 weeks. The accelerated differentiation on the rGO films was assigned to their higher capability for electron transfer. Meanwhile, the better differentiation on the ginseng-rGO film (as compared to the hydrazine-rGO film) was attributed to its higher biocompatibility, more hydrophilicity and the π−π attachment of ginsenoside molecules (as powerful antioxidants) on surface of the reduced sheets.  相似文献   

19.
A series of nanocomposites containing reduced graphene oxide (GO) versus multiwalled carbon nanotubes (MWCNTs) as filler contents anchored with sulfonated polysulfone (SPSF) polymer matrix have been successfully prepared by sol–gel technique with up to 0.5 wt%. The influence of reduced GO compared to MWCNTs to enhance conductivity of nanocomposite SPSF membranes for higher efficient water electrolysis applications has been studied. The nanocomposite membranes were characterized using scanning electron microscopy, atomic force microscopy, Raman spectroscopy, transmission electron microscopy, optical microscopy, electrical conductivity, and tensile testing. The membrane porous structure, porosity, and pores uniformity plus the uniformity of dispersion of mixture are investigated. The conductivity of the composite membranes for water electrolysis applications has been characterized using localized probes across the surface. The results show SPSF–GO nanocomposite membranes offer higher conductivity and improved performance than those of SPSF–MCNT. A uniform constant and high current density of 1.39 A/cm2 has been achieved in SPSF–GO membrane at 60°C. POLYM. COMPOS. 36:475–481, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
Homogeneous dispersion and strong filler–matrix interfacial interactions were vital factors for graphene for enhancing the properties of polymer composites. To improve the dispersion of graphene in the polymer matrix and enhance the interfacial interactions, graphene oxide (GO), as an important precursor of graphene, was functionalized with amine‐terminated poly(ethylene glycol) (PEG–NH2) to prepare GO–poly(ethylene glycol) (PEG). Then, GO–PEG was further reduced to prepare modified reduced graphene oxide (rGO)–PEG with N2H4·H2O. The success of the modification was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. Different loadings of rGO–PEG were introduced into polyimide (PI) to produce composites via in situ polymerization and a thermal reduction process. The modification of PEG–NH2 on the surface of rGO inhibited its reaggregation and improved the filler–matrix interfacial interactions. The properties of the composites were enhanced by the incorporation of rGO–PEG. With the addition of 1.0 wt % rGO–PEG, the tensile strength of PI increased by 81.5%, and the electrical conductivity increased by eight orders of magnitude. This significant improvement was attributed to the homogeneous dispersion of rGO–PEG and its strong filler–matrix interfacial interactions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45119.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号