首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady state fluorescence was used to study the interfaces of composites formed by silica nanoparticles and three polymers: poly(methylmethacrylate) (PMMA), polystyrene (PS), and low density polyethylene (LDPE). The fluorescent response from the pyrene‐1‐sulfonamide (PSA) was used to study changes appearing in its immediate surroundings. Molecular dynamics of the polymers was studied monitoring the fluorescent response from the PSA as a function of temperature. When the fluorophore was dispersed within the polymers, information from their bulk was obtained while, attaching the fluorophore to the surface of the silica nanoparticles, information from the interface was collected. In the case of the amorphous polymer matrices (PMMA and PS), the presence of silica nanoparticles exerts a small constrain effect by reducing the chain mobility. In the case of the semicrystalline thermoplastic polymer (LDPE) when nanoparticles are not present, only one clear relaxation assigned to the typical diffusion‐like motion of chain segments in the crystallites has been observed. However, when nanoparticles are within the polymer, three relaxations are clearly observed: one in the interlamellar amorphous phase and two due to diffusion‐like motion of chain segments in the crystallites under or without the influence of the nanoparticles, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Nanocomposites consisted of different quantities of silver (Ag) nanoparticles incorporated in a polystyrene (PS) matrix have been prepared by solution mixing method. Transmission electron microscopy was applied to determine the size distribution of the Ag nanoparticles, while the morphology of fractured surfaces of pure PS and Ag/PS nanocomposites was examined by scanning electron microscopy. Absorption spectra of nanocomposites were compared with theoretically calculated spectra based on the Maxwell‐Garnett effective medium theory. The influence of Ag content on thermal properties of Ag/PS nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry. Thermal and thermo‐oxidative stability of the host polymer were improved by introduction of silver nanoparticles. The glass transition temperature of the prepared Ag/PS nanocomposites was lower in comparison with the neat PS and decreased with the increase of the Ag content due to the very weak interfacial interaction between Ag nanoparticles and polymer matrix. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
The effects of physical aging on the thermomechanical properties of polymers were investigated using silicon microcantilever deflection measurements. Polystyrene (PS), polymethylmethacrylate (PMMA), a PS/PMMA blend, or PS-PMMA diblock copolymer were applied to one side of a microcantilever, and the temperature-dependent thermal stress in the polymers was measured. A maximum compressive stress peak was observed for the PS- and PMMA-coated cantilevers during heating but not during cooling, which produced hysteresis. Physical aging of the polymers was found to contribute to the development of the hysteresis properties. The two distinct maximum compressive stress peaks in the PS/PMMA blend coincided with the temperatures at which the pure PS and PMMA peaks occurred, indicating that the glass transitions of each polymer were independent. In contrast, the thermal stress profiles of the PS-PMMA copolymer exhibited a single broad peak at a position intermediate between the peak positions of the pure PS and PMMA, indicating that the PS and PMMA polymers interacted during the glass transition.  相似文献   

4.
Poly(methyl methacrylate)/styrene/multi‐walled carbon nanotubes (PMMA/PS/MWNTs) copolymer nanocomposites with different contents have been prepared successfully by means of in situ polymerization method. The structure and the microhardness of PMMA/PS/MWNTs copolymer nanocomposites were characterized. The tribological behaviors of the copolymer nanocomposites were investigated by a friction and wear tester under dry conditions. The relative humidity of the air was about 50% ± 10%. Comparing with pure PMMA/PS copolymer, the copolymer nanocomposites showed not only better wear resistance but also smaller friction coefficient. MWNTs could help the nanocomposites dramatically improve the wear resistance property. The mechanisms of the improvements on the tribological properties of the PMMA/PS/MWNTs copolymer nanocomposites were also discussed in detail. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The effect of silica nanoparticles on the morphology and the rheological properties was investigated in the immiscible polymer blend poly(carbonate)/poly(methyl methacrylate) (PC/PMMA). In the melt state, the linear viscoelastic properties of the nanocomposite showed a reduction effect of the silica nanoparticles on the mobility of one of the polymer which is related to the state of distribution of the silica nanoparticles. Hydrophilic and hydrophobic silica particles were used to study particle migration and their effects on the morphology and it was shown that the distribution of the nanoparticles depends on the balance of interactions between the surface of the particles and the polymer components. The effect on the coarsening kinetics was investigated in both hydrophilic and hydrophobic silica‐filled blends. Compared to the hydrophilic silica, a better compatibilization can be obtained by introducing the hydrophobic silica particles at the PC/PMMA interface as the solid barrier. POLYM. ENG. SCI., 55:1951–1959, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
In the present study, the feasibility of Friction Spot Welding (FSpW) of a commercial-grade poly(methyl methacrylate) (PMMA) (PMMA GS) and PMMA 6N/functionalized silica (SiO2) nanocomposites was investigated. The silica nanoparticles were functionalized via atom transfer radical polymerization (ATRP) with PMMA chains to achieve a uniform dispersion in the polymer matrix. The successful functionalization of silica nanoparticles with PMMA chains via ATRP was evaluated by ATR-FT-IR and TGA measurements. Rheological investigations of the silica nanocomposites showed a plateau of the storage modulus G′ at low frequencies (0.01–0.03 rad/s) as a result of elastic particle–particle interactions. Overlap friction spot welds consisting of PMMA GS and a 2 wt% SiO2-g-PMMA nanocomposite were successfully prepared and compared to spot joints of PMMA GS welded with PMMA 6N and PMMA 6N/silica nanocomposite with 2 wt% unfunctionalized silica nanoparticles. Raman mappings of selected areas of cross-sectional plastographic specimens revealed an increased mixing behavior between the two polymer plates in the case of PMMA GS/2 wt% SiO2-g-PMMA joints. Although the joints welded with PMMA 6N/silica nanocomposites showed a reduction of 22% in lap shear strength and 21% displacement at peak load compared with the neat PMMA spot welds, they can compete with other state-of-the-art PMMA welding techniques such as thermal bonding and ultrasonic welding, which indicates the potential of friction spot welding as an alternative fabrication technology for joining future nanocomposite engineering parts.  相似文献   

7.
Previous work has shown that the formation of a network structure of nanoparticles within a polymer matrix can significantly reduce nanocomposite flammability and that viscoelastic properties could be utilized to predict their flammability reduction. The present work extends this type of investigation to the study of clay and carbon nanotube nanocomposites. In particular, we study PS/clay, PS/MWNT, PMMA/clay, and PMMA/SWNT nanocomposites. At a clay level of about 10% by mass, the network structure is formed for the PS and the PMMA clay nanocomposites; it requires a level of about 0.5% with the SWNT and 2% with the MWNT. These samples showed significantly reduced mass loss rates of PS and PMMA. However, the solid residues collected from radiative gasification tests of PS/clay and PMMA/clay showed many small cracks, despite the network formation within the initial sample. This is in contrast to the smooth, continuous residues (no cracks or openings) for PS/MWNT and PMMA/SWNT nanocomposites. The cracks in the clay samples are probably formed due to weaker network at elevated temperatures due to weaker bridging interaction between clay platelets as compared to stronger network resulting from dense entanglement and bridging of carbon nanotubes.  相似文献   

8.
Poly(ethylene 2,6‐naphthalate) (PEN) nanocomposites reinforced with silica nanoparticles were prepared by direct melt compounding. Dynamic thermogravimetric analysis was conducted on the PEN/silica nanocomposites to clarify the effect of silica nanoparticle on the thermal decomposition behavior of the resultant nanocomposites. There is a significant dependence of thermal decomposition behavior for PEN/silica nanocomposites on the content of silica nanoparticles and heating rate. The variation of the activation energy for thermal decomposition reflected the improvement of the thermal stability of the PEN/silica nanocomposites. The unique characteristics of silica nanoparticles resulted in physical barrier effect against the thermal decomposition, leading to the enhancement of the thermal stability of the PEN/silica nanocomposites. The incorporation of silica nanoparticles into the PEN matrix increased the storage modulus of the PEN/silica nanocomposites and made it possible for them to sustain higher modulus at higher temperature relative to pure PEN. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
High transparent and UV‐shielding poly (styrene)‐co‐poly(methyl methacrylate) (PS‐PMMA)/zinc oxide (ZnO) optical nanocomposite films were prepared by solution mixing using methyl ethyl ketone (MEK) as a cosolvent. The films were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectra, high‐resolution transmission electron microscopy (HR‐TEM), and atomic force microscope (AFM). Cross‐section HR‐TEM and AFM images showed that the ZnO nanoparticles were uniformly dispersed in the polymer matrix at the nanoscale level. The XRD and FTIR studies indicate that there is no chemical bond or interaction between PS‐PMMA and ZnO nanoparticles in the nanocomposite films. The UV–vis spectra in the wavelength range of 200–800 nm showed that nanocomposite films with ZnO particle contents from 1 to 20 wt % had strong absorption in UV spectrum region and the same transparency as pure PMMA‐PS film in the visible region. The optical properties of polymer are greatly improved by the incorporation of ZnO nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Poly(vinyl chloride) (PVC)/SiO2 nanocomposites were prepared via melt mixture using a twin‐screw mixing method. To improve the dispersion degree of the nanoparticles and endow the compatibility between polymeric matrix and nanosilica, SiO2 surface was grafted with polymethyl methacrylate (PMMA). The interfacial adhesion was enhanced with filling the resulting PMMA‐grafted‐SiO2 hybrid nanoparticles characterized by scanning electron microscopy. Both storage modulus and glass transition temperature of prepared nanocomposites measured by dynamic mechanical thermal analysis were increased compared with untreated nanosilica‐treated PVC composite. A much more efficient transfer of stresses was permitted from the polymer matrix to the hybrid silica nanoparticles. The filling of the hybrid nanoparticles caused the improved mechanical properties (tensile strength, notched impact strength, and rigidity) when the filler content was not more than 3 wt %. Permeability rates of O2 and H2O through films of PMMA‐grafted‐SiO2/PVC were also measured. Lower rates were observed when compared with that of neat PVC. This was attributed to the more tortuous path which must be covered by the gas molecules, since SiO2 nanoparticles are considered impenetrable by gas molecules. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Changes in mechanical properties during isothermal physical aging were investigated for three miscible blends: polystyrene (PS)/poly(2,6-dimethyl 1,4-phenylene oxide) (PPO), PS/poly(vinylmethylether) (PVME), and poly(methylmethacrylate) (PMMA)/poly(ethyleneoxide) (PEO). The kinetics of stress relaxation was investigated for the blend, dilute in one component, and compared with that of the neat major component at equal temperature distances, Tg-T, from the midpoint glass transition temperature. It is demonstrated that for all three blends, the mean stress relaxation time (τ) does not scale with Tg-T. For PS/PPO and PS/PVME blends, the stress relaxation rates are faster compared to neat PS; for PMMA/PEO, they are slower than for neat PMMA. Two effects appear to be important in contributing to this discrepancy. First, addition of the second component produces a change in the packing density of the blend: less dense for PS/PPO and PS/PVME; more dense for PMMA/PEO. Comparison of average free volume hole sizes and fractional free volumes measured via orthopositronium annihilation lifetime measurements for all three blends versus the pure constituents are qualitatively consistent with this interpretation. Second, because of the presence of concentration fluctuations in the blend, it is expected that the initial stress decay is dominated by regions enriched in the more mobile component. From observations of the change in width of the stress relaxation time distribution, this effect appears to be particularly significant in the PS/PVME blend. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 483–496, 1997  相似文献   

12.
A number of batch polymerizations were performed to study the effect of pristine nanoparticle loading on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. In order to improve the dispersion of silica nanoparticles in PMMA matrix, the silanol groups of the silica are functionalized with methyl methacrylate groups and modified nanoparticles were used to synthesize PMMA/modified silica nanocomposites via RAFT polymerization. Prepared samples were characterized by thermogravimetric analysis (TGA), dynamic light scattering (DLS), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). According to results, introduction of modified nanoparticles results in better thermal and mechanical properties than those of pristine nanoparticles. Also, surface modification and increasing silica nanoparticles result in variation of thermal degradation behavior of nanocomposites. The best improvement of mechanical and thermophysical properties is achieved for nanocomposites containing 7 wt. % silica nanoparticles.  相似文献   

13.
Poly(methyl methacrylate) (PMMA)/organoclay nanocomposites prepared by melt‐compounding using a co‐rotating twin‐screw extruder were intercalated nanocomposites. Commercially available PMMA resins of various molecular weights were used for comparison. The results showed an optimum compounding temperature for maximum intercalation with balanced shear and diffusion. Higher operating temperature reduced the shear mixing effect, and might have induced early degradation of the organoclay. Lower operating temperature, in contrast, reduced the mobility of the polymer molecules, which not only hampered the intercalation attempts, but also generated high torque in the extrusion. The mechanical behavior of the nanocomposites was studied. The tensile modulus, storage modulus and glass transition temperature of the nanocomposites increased with increasing clay content; however, an associated decrease in strength and strain at break was also observed. The notched impact strength also showed a slight decrease with clay content. Nanocomposites based on the lower molecular weight PMMA yielded more significant improvement in mechanical and thermal properties at the same clay content. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
The structural evolution of nanoparticles (NPs) dispersion under uniaxial stretching and extension/retraction deformation cycles above Tg was investigated in model silica/polymethylmethacrylate (PMMA) nanocomposites (PNCs) by a combination of Small Angle X-ray Scattering (SAXS) and Transmission Electronic Microscopy (TEM). The different structure displacements and reorganizations can be quantitatively characterized as a function of elongation ratio, silica volume fraction and NP size. At low NP volume fraction, a rotation/orientation of non-connected aggregates is observed along the stretching direction, while the reinforcement is low and might be limited by the large-scale aggregates. At high volume fraction, the stress–strain curves exhibit three regimes. (i) At low stretching ratio, in the linear deformation regime, reinforcement is driven by the primary network filler structure. (ii) Above a few percent of deformation, a yield is observed and can be associated to the network breakdown as revealed by cyclic extension/retraction experiments. (iii) As a result of this yield, at larger deformation, the stress curve appears as shifted upward with respect to the one of pure polymer. A persistence of this vertical shift (constant value up to large deformation) might be related with SAXS measurements to a non-affine deformation of the NPs network due to new structural arrangements, while in a second case, the decrease of stress to the pure polymer value with increasing deformation is related with observation of affine deformation after the yield. Finally, affinity and non-affinity after yielding are discussed for all the systems according to the strength of the NP–NP interaction.  相似文献   

15.
Incorporation of crystalline barium titanate (BT) nanoparticles into poly(methyl methacrylate) (PMMA) was carried out to prepare highly refractive polymer nanocomposite films that have transparency and high permittivities. The BT nanoparticles were prepared by hydrolysis of a barium/titanium complex alkoxide in 2‐methoxyethanol, then surface‐modified with a silane coupling agent (3‐methacryloxypropyltrimethoxysilane) to improve their affinity for PMMA. The incorporation of the surface‐modified nanoparticles into PMMA was performed up to a nanoparticle content almost equivalent to particle close‐packing state. The refractive index of the composite films increased with nanoparticle incorporation, keeping the relative transmittance normalized with PMMA film above 90%. A high refractive index of 1.82 was reached at a nanoparticle content of 53 vol% with a dielectric constant as high as 36 and a dissipation factor as low as 0.05. The results demonstrate that the crystalline BT nanoparticles are useful fillers for effectively increasing both refractive index and dielectric constant of polymer nanocomposites. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Vermiculite (Verm)/polystyrene (PS) nanocomposites were prepared by dispersing a doubly organo-modified Verm (DOVerm) in PS via in situ polymerization (DOVerm/PS 1/99, 3/97, 5/95, and 7/93 mass/mass ratios). The morphology of Verm/PS nanocomposites evolved three stages as the content of DOVerm decreased in the nanocomposites: intercalation at high filler content, intermediate state of intercalation to exfoliation, and exfoliation of Verm in PS matrix with a low filler content. The morphological changes of Verm/PS nanocomposites were confirmed by the X-ray diffraction (XRD) patterns and the transmission electron microscopy (TEM) images. Compared with the pure PS, the nanocomposites filled with Verm showed significant enhancements on thermal stability and dynamic mechanical properties. Interestingly, the nanocomposites filled with 1 and 7 mass% of DOVerm exhibited more pronounced effects of Verm on the properties. It was proved that the double organo-modification clearly enhanced the ultimate properties of the Verm/PS nanocomposites.  相似文献   

17.
Polystyrene (PS) chains with molecular weights comprised between 15,000 and 60,000 g/mol and narrow polydispersities were successfully grown from the surface of silica nanoparticles by nitroxide-mediated polymerization (NMP). Small angle X-ray scattering was used to characterize the structure of the interface layer formed around the silica particles, and at a larger scale, dynamic light scattering was used to determine the hydrodynamic diameter of the functionalized silica suspension. In a second part, blends of PS-grafted silica particles and pure polystyrene were prepared to evaluate the influence of the length of the grafted PS segments on the viscoelastic behavior of the so-produced nanocomposites in the linear viscoelasticity domain.Combination of all these techniques shows that the morphology of the nanocomposite materials is controlled by grafting. The steric hindrance generated by the grafted polymer chains enables partial destruction of the agglomerates that compose the original silica particles when the latter are dispersed either in a solvent or in a polymeric matrix.  相似文献   

18.
Silica/titania binary inorganic component was synthesized by a nonhydrolytic sol‐gel method. Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM) results indicated that titania was stabilized by silica because of the formation of a connecting structure, which would greatly restrain the high aggregation tendency of titania nanoparticles. The thermal stabilities of the PMMA/silica/titania ternary nanocomposites were measured by thermo‐gravimetric analysis (TGA). Although the solvent extraction results confirmed that there were no covalent bond interactions between polymer and inorganic phases, the trace amount of stabilized titania improved the thermal and thermo‐oxidative stabilities of PMMA because titania/silica nanoparticles may have ability to trap the free radicals generated in the degradation of PMMA. POLYM. ENG. SCI., 47:302–307, 2007. © 2007 Society of Plastics Engineers.  相似文献   

19.
We report on the influence of parameters controlling filler dispersion and mechanical reinforcement in model nanocomposites. We elaborate a series of nanocomposites and present a structural characterization of silica dispersion in polymer matrix for several particle sizes and polymer matrices, at all relevant scales, by coupling Small Angle X-ray Scattering and Transmission Electronic Microscopy. The mechanical properties are investigated in the linear regime by coupling Dynamical Mechanical Analysis and plate/plate rheology. The results show that: (i) for all filler sizes and matrices, a structural transition is observed from non-connected fractal aggregates at low silica concentration to connected network at high particle content. (ii) In the dilute regime, the reinforcement implies a polymer chain contribution with different possible origins: increase of entanglements density for PS and increase of friction coefficient for PMMA. (iii) In the concentrated regime, for a given polymer, the reinforcement amplitude can be tuned by the rigidity of the filler network, which directly depends on the particle–particle interaction.  相似文献   

20.
Organically modified nanoclays have been reported to play the role of a compatibilizer for immiscible polymer blends. However, the mechanism of compatibilization by nanoclay has been reported differently. In this work, we investigated the exact mechanism of compatibilization of nanoclay in immiscible polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend in the presence of sodium-montmorillonite (Na-MMT) through selective dispersion of clay in the matrix phase. Through a detailed investigation of the morphology of PS/PMMA/Na-MMT blend nanocomposites, the plausible mechanism behind the compatibilization effect of clay in immiscible blends has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号