首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As a result of the growing interest in the biological and mechanical performance of hydroxyapatite (HA)–graphene nano-sheets (GNs) composite systems, reduced graphene oxide (rGO) reinforced hydroxyapatite nano-tube (nHA) composites were synthesized in situ using a simple hydrothermal method in a mixed solvent system of ethylene glycol (EG), N,N-dimethylformamide (DMF) and water, without using any of the typical reducing agents. The consolidation process was performed by hot isostatic pressing (HIP) at 1150 °C and 160 MPa. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, enabling confirmation of the synthesis and reduction of the nHA and rGO, respectively. The structure of the synthesized powder and cell attachment on the sintered sample was confirmed by field emission scanning electron microscopy (FESEM). The effects of the rGO on the mechanical properties and the in vitro biocompatibility of the nHA based ceramic composites were investigated. The elastic modulus and fracture toughness of the sintered samples increased with the increase of the rGO content when compared to the pure nHA by 86% and 40%, respectively. Cell culture and viability test results showed that the addition of the rGO promotes osteoblast adhesion and proliferation, thereby increasing the biocompatibility of the nHA–rGO composite.  相似文献   

3.
The effects of the reduction process and carbon nanotube (CNT) content on the supercapacitive behavior of electrodes made from flexible, binder-free thick graphene oxide (GO) papers are studied. It is found that the supercapacitive performance depends on several factors, including the presence of oxygenated functional groups after reduction, the interlayer spacing of the GO papers and their wettability with electrolyte. A moderate reduction of GO papers using hydrazine or annealing at a low temperature of 220 °C in air is proven to be more beneficial to achieve a high capacitance than the heavy reduction using a hydrazine vapor or a high temperature thermal treatment. The addition of a small amount of CNT, typically 12.5 wt.%, to form thick GO/CNT sandwich papers gives rise to an excellent specific capacitance of 151 F g?1 at a current density of 0.5 A g?1, as well as a retention ratio of 86% of the initial value after 6000 charge/discharge cycles at 5 A g?1. These improvements arise from the synergistic effects of the increased electronic conductivity and effective surface area associated with large electrochemical active sites due to the presence of intercalated CNT.  相似文献   

4.
Y.F. Huang 《Polymer》2009,50(3):775-1085
This study reports the synthesis of polyaniline (PANI) nanotubes with the introduction of methanol in aqueous solutions. SEM images indicate that well-dispersed PANI nanotubes are produced when the concentration of methanol increases up to 1 M. On the other hand, polymers primarily form irregular agglomerates when only monomers and oxidant are used in the absence of methanol. Transmission electron microscopy (TEM) reveals that the resulting nanotubes have an outer diameter of about 200 nm and an inner diameter of 0-50 nm. Fourier transform infrared (FT-IR) spectra indicate that the intermediate samples obtained at a reaction time of around 60 min have a structure consisting of a head of phenazine-like units and a tail of para-linked aniline units. Ultraviolet-visible (UV-vis) spectra indicate that emeraldine salt polyaniline (ES-PANI) appears in sequence as the reaction time reaches 75 min. At the time interval of 60-75 min, the self-curling behavior of the PANI intermediates first appears at 60 min, and PANI nanotubes can be observed starting at 75 min. This is the first study to observe this self-curling process and propose that it explains the formation of PANI nanotubes. Noteworthily, the nanotubes transform into irregular agglomerates after a de-doping process.  相似文献   

5.
We developed a one-step hydrothermal method to assemble graphene oxide (GO) sheets into hollow graphene spheres (HGSs), using only a GO/H2SO4 aqueous suspension as the starting material. Scanning electron microscope, focused ion beam scanning electron microscope and transmission electron microscope images show that the as-prepared HGSs vary from 1 to 3 μm in diameter and have a hollow interior structure. The as-prepared HGSs show a high capacitance of 207 F g−1, as well as good rate capability and cycling stability when used as electrode materials for supercapacitors.  相似文献   

6.
The homogeneous dispersion and strong interfacial interactions of carbon nanomaterials are vital factors on enhancing the properties of polymer composites. Two‐dimensional reduced graphene oxide (rGO) and one‐dimensional carbon nanotubes (CNTs) were first grafted by 4,4′‐oxydianiline (ODA). The successful grafting of ODA onto the rGO and CNTs were confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy. The hybrid carbon nanomaterials of the functionalized CNTs and rGO with different ratios were prepared via a solution‐mixing method, and their dispersion state was investigated. The hybrid carbon nanomaterials with good stability were introduced to polyimide (PI) via in situ polymerization. The morphology and properties of the polymer composites were studied. The results show that much better mechanical and electrical properties of the composites could be achieved in comparison with those of the neat PI. An improvement of 100.7% on the tensile strength and eight orders for the electrical conductivity were achieved at only a 1.0 wt % hybrid content. A significant enhancement effect was attributed to the homogeneous dispersion of the filler, filler–matrix strong interfacial interactions, and unique structure of the hybrid carbon nanomaterials in the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44575.  相似文献   

7.
A facile vacuum filtration method for the preparation of hybrid films to achieve superior field emission properties from carbon nanotubes (CNTs) using reduced graphene oxide (rGO) as a bi-functional filler has been proposed. In the hybrid films, CNTs serve as electron emitters, while rGO helps to control the density of the CNT-emitters and reduce electrical resistance of the films. Via controlling volumes of CNTs and rGO dispersions, electron field emission properties of the hybrid films can be easily tailored. Higher weight ratio of rGO:CNT results in better electrical properties and the best field emission property is achieved when a rGO:CNT weight ratio of 1:3 is employed. The hybrid film reveals a significant improvement in field emission properties, as compared with the CNT film without adding rGO. Decreases in sheet resistance, turn-on field, and threshold field are attributed to the formation of extended conjugated network between CNTs and rGO in association with the reduction of screening effect through the optimization of density of CNT-emitters. The concept that rGO can be employed to control the density of CNT emitters will be of special interest for field emission enhancement.  相似文献   

8.
The novel approach for deposition of iron oxide nanoparticles with narrow size distribution supported on different sized graphene oxide was reported. Two different samples with different size distributions of graphene oxide (0.5 to 7 μm and 1 to 3 μm) were selectively prepared, and the influence of the flake size distribution on the mitochondrial activity of L929 with WST1 assay in vitro study was also evaluated. Little reduction of mitochondrial activity of the GO-Fe3O4 samples with broader size distribution (0.5 to 7 μm) was observed. The pristine GO samples (0.5 to 7 μm) in the highest concentrations reduced the mitochondrial activity significantly. For GO-Fe3O4 samples with narrower size distribution, the best biocompatibility was noticed at concentration 12.5 μg/mL. The highest reduction of cell viability was noted at a dose 100 μg/mL for GO (1 to 3 μm). It is worth noting that the chemical functionalization of GO and Fe3O4 is a way to enhance the biocompatibility and makes the system independent of the size distribution of graphene oxide.  相似文献   

9.
The present work reports on the production of reduced graphene oxide (GO) by the chemical reduction of GO using formic acid. The process involved is simple, environmentally friendly, low cost and metal free. The structural and electrical characterization ascertains that the quality of the material improves with the time of reduction. To compare the effect of reduction time, three samples are prepared for 18, 24 and 30 h respectively. The samples produced are characterized to confirm the reduction of GO and formation of reduced GO (FRGO) by high-resolution transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction pattern, ultraviolet visible spectroscopy and Raman spectroscopy. Among the three samples, FRGO-3 prepared for reduction time of 30 h shows a good crystalline behavior and the highest electrical conductivity (11.859 S/cm) at room temperature. This value is comparable with other reported values. Further, from thermo-gravimetric analysis reasonable thermal stability for FRGO-3 is observed in the temperature range 400–800 °C. Based on the above observations a mechanism of reduction from GO to reduced GO by formic acid (FRGO) is proposed.  相似文献   

10.
Amino-functionalized reduced graphene oxide (a-RGO) is used to change the morphology of polyaniline (PANI) and to increase the photocurrent in the PANI–a-RGO hybrid. The PANI morphology is changed from a nanotube to a flat rectangular nanopipe (FRNP) by the polymerization of aniline with a-RGO in acetic acid. Scanning (SEM) and transmission electron microscopy show the formation of FRNP morphology which varies by changing the PANI/a-RGO ratio in the hybrid. Time dependent SEM and Fourier transform infrared spectroscopy were used to investigate the mechanism of FRNP formation. Efficient (∼500 times) improvement in photocurrent is observed in FRNP over PANI nanotubes on irradiation with white light. The photoresponse is quite reproducible even after several cycles with a time interval of 100 s and in both the negative and positive bias photocurrent increases. A donor–acceptor based ‘electron–hole’ pair mechanism is proposed for the photocurrent behavior of FRNP. Using the PANI–a-RGO FRNP hybrid a dye sensitized solar cell with Rose Bengal dye is constructed yielding a power conversion efficiency of 2.012%.  相似文献   

11.
A free-standing graphene oxide film (GOF) obtained by self-assembly at a liquid/air interface was annealed in a confined space between two stacked substrates to form a free-standing highly conductive graphene film. Characterization indicates that the oxygen-containing functional groups (e.g. epoxy, carboxyl, and carbonyl) were removed as small molecules (e.g. H2O, CO2, and CO) during the annealing, meanwhile the size of sp2 domains in the film was decreased. When annealed between two stacked wafers, random interlayer expansion and fractional movement in the GOF were suppressed by the pressure-induced friction, which helps preserve the morphology of the film. The conjugation in the basal plane of graphene and π–π interactions between well stacked graphene sheets favor the transportation of charge carriers in the film, to produce a good electrical conductivity of the resulting free-standing reduced GOF (increased from 1.26 × 10?5 to 272.3 S/cm).  相似文献   

12.
二维纳米材料具有高机械强度和比表面积、大量表面官能团、良好的亲水性及生物相容性,是固定化酶的良好载体。本文选取经典的氧化石墨烯(GO)以及新型的过渡金属碳/氮化合物(MXenes),分别介绍了它们的制备方法和结构、物理和化学性质,综述了它们在固定化酶领域的应用研究,并进行了比较。文中指出:GO由石墨烯经化学氧化再剥离制得,MXenes由其前体经刻蚀制得,不同的氧化或刻蚀方法制得的材料在组成、结构、性能等方面存在差异。GO表面的可反应官能团更多,包括羟基、羧基和环氧基,故在固定化酶领域应用广泛。MXenes固定化酶则主要利用表面的羟基反应或负电荷吸附,目前主要用于制备生物传感器。最后指出这两种材料还存在制备效率低、纳米片易聚集、循环利用性差等问题。今后的发展方向是要开发更为简单和安全的材料制备方法,探索更为有效的插层和剥离手段以及改善固定化酶的回收策略,进一步推进二维纳米材料在固定化酶领域的应用。  相似文献   

13.
14.
王向鹏  郑云香  宗丽娜  张春晓  吴伟 《化工进展》2020,39(12):5125-5135
氧化石墨烯改性吸水树脂综合了氧化石墨烯和吸水树脂的优势,在水处理吸附、药物缓释、组织工程等领域有广阔的应用前景。目前有关氧化石墨烯改性吸水树脂的制备方法、性能及应用缺少相关的综述。因此,本文主要分四部分来综述近几年氧化石墨烯改性吸水树脂的研究进展。第一部分简要介绍了氧化石墨烯的结构特性及作为吸水树脂改性剂的特点;第二部分主要综述了氧化石墨烯改性吸水树脂的主要聚合工艺;第三部分主要介绍了氧化石墨烯对吸水树脂微观结构和宏观性能的影响;最后,介绍了氧化石墨烯改性吸水树脂在废水处理、缓解“热岛效应”、柔性器件及医用材料等领域的应用,并分析了其存在的问题,为后续开展氧化石墨烯改性吸水树脂的相关研究及应用提供了参考。  相似文献   

15.
A three-dimensional carbon nanotube (CNT)/graphene hybrid material was synthesized by a two-step chemical vapor deposition (CVD) process. Due to the separated CVD processes for graphene and CNTs, the structures of the hybrid materials could be easily controlled. It is revealed that graphene film was tightly connected with one end of the CNT arrays, forming “jellyfish” structures. Moreover, our results indicate that the presence of graphene influenced the precipitation and growth rate of CNTs. The precipitation of CNTs was postponed due to the existence of graphene. However, the average growth rate of CNTs in the graphene region for the whole process was faster than that in the region without graphene.  相似文献   

16.
A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.  相似文献   

17.
O. Akhavan  E. Ghaderi 《Carbon》2012,50(5):1853-1860
Interactions of chemically exfoliated graphene oxide (GO) nanosheets and Escherichia coli bacteria living in mixed-acid fermentation with an anaerobic condition were investigated for different exposure times. X-ray photoelectron spectroscopy showed that as the exposure time increased (from 0 to 48 h), the oxygen-containing functional groups of the GO decreased by ~60%, indicating a relative chemical reduction of the sheets by interaction with the bacteria. Raman spectroscopy and current–voltage measurement confirmed the reduction of the GO exposed to the bacteria. The reduction was believed to be due to the metabolic activity of the surviving bacteria through their glycolysis process. It was found that the GO sheets could act as biocompatible sites for adsorption and proliferation of the bacteria on their surfaces, while the bacterially-reduced GO (BRGO) sheets showed an inhibition for proliferation of the bacteria on their surfaces. It was shown that the slight antibacterial property of the BRGO sheets and the detaching of the already proliferated bacteria from the surface of these sheets contributed to the growth inhibition of the bacteria on the surface of the reduced sheets.  相似文献   

18.
19.
This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 °C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g−1 (based on composite) is obtained at a specific current of 1 A g−1 as compared with 71 F g−1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g−1 even at 10 A g−1. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.  相似文献   

20.
In the present study, graphene oxide (GO) was incorporated into poly(vinylidene fluoride) (PVDF) and chemically modified PVDF (M‐PVDF) to prepare mixed matrix membranes (MMMs) for gas separation application. Performed analyses proved appropriate dispersion of exfoliated GO sheets in polymer matrices and sufficient compatibility at the interfacial phases. M‐PVDF based MMMs were thermally and mechanically more stable relative to the PVDF‐based MMMs. The oxygen containing functional groups in M‐PVDF was probably the main reason for this more stability. PVDF/GO MMMs rendered low gas permeability and high selectivity. Both impermeable GO sheets and crystalline phases of PVDF were responsible for such behavior. On the other hand, interestingly gas permeability of M‐PVDF/GO MMMs was enhanced while no substantial decline was recorded in gas selectivity. For instance, He and CO2 permeability was increased 12.46% and 25.89%, respectively, compared to the pure PVDF membrane. This behavior originated from functional groups of M‐PVDF and the interaction of these groups with GO sheets. Since GO often amplified gas barrier properties of polymers, such increscent would be appreciable. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46271.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号