首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
红外探测器必须在大约80K低温下才能正常工作。因此,它一定要装在杜瓦中,而且要有节流制冷器或制冷机给其提供低温环境。随着红外技术的迅速发展,出现了杜瓦/快速起动节流制冷器集成体和杜瓦/斯特林循环制冷机集成体。杜瓦/快速起动节流制冷器集成体将杜瓦与快速起动节流制冷器制做为一体,消除了原与节流制冷器相配合的杜瓦芯柱,降低了能耗,诚小了体积,减轻了质量。这种集成体中的快速起动节流制冷器是以玻璃为材料的平面状快速起动节流制冷器,它采用两级制冷,第一级选用氮-碳氢化合物混合气体为工质,第二级选用纯氮气体为工质,在快速起动节流制冷器內装有微型喷射泵,这样,不仅提高了节流制冷器制冷效率,而且可使快速起动节流制冷器制冷温度达70K以下,有利地提高了红外探测器的工作性能。杜瓦/斯特林循环制冷机集成体将杜瓦与斯特林循环制冷机制做为一体,斯特林循环制冷机冷指与杜瓦芯柱合二为一,红外探测器直接安装于斯特林循环制冷机冷指之上,消除了芯柱热传导、斯特林循环制冷机与杜瓦之间连接的热偶合器及其产生的热阻,较大地降低了系统能耗,减少了斯特林循环制冷机体积,减轻了斯特林循环制冷机质量。  相似文献   

2.
陈俊林  王小坤  曾智江  朱海勇  季鹏  王翰哲  胡兴健 《红外与激光工程》2022,51(12):20220180-1-20220180-10
为了满足低温光学系统低背景、低功耗和红外探测器制冷组件高环境适应性的要求,提出了探测器制冷组件杜瓦主体(窗口、窗口帽和引线盘) 200 K低温保持,与制冷机膨胀机或脉管散热面柔性绝热连接的设计思想。针对低温光学用杜瓦柔性外壳工程应用中的特点,文中以某低温光学用长波12.5 μm 2 000元红外探测器杜瓦组件以例,提出了波纹管作为绝热连接的柔性外壳,重点阐述杜瓦柔性波纹管隔热、力学和相关漏热的设计,并开展不同热负载条件下波纹管热特性验证,可实现最小温度梯度为37.22 K,绝热热阻为1142 K/W,误差在37%。为综合评价低温光学用柔性外壳结构杜瓦组件的性能,对某低温光学用长波12.5 μm 2 000元探测器柔性外壳杜瓦组件开展热真空和鉴定级的力学试验考核验证,试验结果表明实现了200 K低温窗口,探测器60 K工作,杜瓦漏热为544 mW,低温工况工作时相对于常温工况制冷机的功耗下降了53%,并通过了4 g的随机力学考核,验证了低温光学用杜瓦柔性波纹管外壳模型合理可行,对于后续低温光学用杜瓦柔性外壳结构工程应用提供了重要参考。  相似文献   

3.
夏晨希  孙闻  王小坤 《红外》2017,38(8):23-26
大面阵红外探测器是红外遥感仪器的核心元件。该类探测器大多由小规模面阵探测器拼接组成,与杜瓦低温冷平台集成后形成杜瓦组件。探测器在杜瓦低温冷平台上安装集成后的应力状态是影响芯片性能和寿命的关键因素。测试了低温时探测器在自由状态下和被安装在杜瓦组件内应变片的热输出,再利用两者的差值表征了探测器与杜瓦低温冷平台集成后的额外应变。以2000×512探测器组件为例,进行了测试验证分析,结果表明该方法可行。  相似文献   

4.
方志浩  付志凯  王冠  张磊 《红外》2024,45(5):18-22
基于甚长波红外探测器对低于液氮温度工作环境的需求,提出了一种深低温工作甚长波红外探测器封装技术。通过对杜瓦组件漏热和芯片电学引出结构的优化设计,可控制芯片在30 K低温工作时整个杜瓦组件的静态热耗为0.65 W,最冷端位置的静态热耗为0.3 W,与之适配的两级脉管制冷机冷量可以满足上述热耗需求。完成了探测器组件的封装测试。结果表明,在制冷机膨胀机热端空气冷却测试条件下,探测器芯片部分可达到35 K的温度;杜瓦的外轮廓小于Φ130 mm×180 mm。该项技术成果促进了深低温工作的甚长波面阵红外探测器封装技术的发展。  相似文献   

5.
张阳  莫德锋  范崔  石新民  俞君  龚海梅  李雪 《红外与激光工程》2023,52(2):20220445-1-20220445-7
为满足拼接式超大面阵型红外探测器的空间应用需求,超大规模冷平台组件需要在低温下工作,冷平台支撑结构需要较高的刚度以满足组件的抗振动性能,又需要较高的结构热阻以降低其传导漏热。提出了对称式八杆结构作为冷平台支撑,该支撑结构采用新型的高强度、低热导率的氧化锆陶瓷材料。基于有限元软件分析了支撑结构的高度、安装倾斜角度、宽厚比和材料对于组件的模态基频、支撑结构热阻以及组件在30 g静力学载荷下的最大应力的影响,通过对比选取了其中一组参数设计了实际的测试组件,支撑的结构热阻达到了220 K/W,对组件进行了5~2 000 Hz的正弦扫频试验、总均方根为9 g RMS的XYZ三个方向的随机振动等力学环境试验,最终组件通过了空间环境适应性试验验证,组件的基频达到了560 Hz,并且测试结果与仿真结果趋势符合较好。结果表明:对称式八杆氧化锆支撑结构解决了超大面阵型红外探测器冷平台组件既需要高力学性能又需要低漏热的难题,满足工程化应用需求。  相似文献   

6.
付志凯  王冠  韦书领  孟令伟  宁提 《红外》2022,43(11):14-19
红外探测器杜瓦冷头结构受温度冲击时容易损伤,甚至会导致探测器组件失效。这是红外探测器组件产品研制中不可避免的可靠性问题之一。针对红外探测器杜瓦冷头的低温可靠性问题展开了相关研究。结合粘接失效原理和有限元仿真,讨论了粘接胶厚度、溢胶等情况对杜瓦冷头低温应力、冷头-冷指粘接面积与探测器温度关系的影响。结果表明,胶层状态是影响杜瓦冷头低温损伤和温度传导的重要原因。产品研制过程中可通过控制粘接胶层来降低大面阵探测器粘接结构的低温应力,从而提高冷头结构的低温可靠性。  相似文献   

7.
罗世魁  成桂梅 《红外与激光工程》2016,45(7):704001-0704001(6)
HgCdTe面阵探测器是空间红外遥感相机的关键部件,随着性能需求的不断提高,器件的规模尺寸不断扩大。HgCdTe面阵探测器在常温下与承载板进行装配,但在深冷状态下工作,需要耐受200 K左右的温度波动。由于探测器与承载板的线膨胀系数不匹配,温度波动会引起探测器翘曲变形,变形严重时,将导致探测器损伤。提出基于高导热碳纤维的HgCdTe大面阵探测器热适配结构,以碳纤维的轴向高热导率降低结构热阻,以碳纤维的极小抗弯截面模量实现热适配结构两端面间的刚度解耦。相对于探测器与承载板直粘,引入基于高导热碳纤维的热适配结构后,探测器与承载板间的热阻仅增加了约1%,而探测器热失配翘曲变形衰减了99.9%,解决了大面阵探测器与承载板间的热失配翘曲变形损伤问题。并对基于碳纤维的热适配结构制备工艺方案进行了简单介绍。  相似文献   

8.
红外探测器杜瓦非概率可靠性设计方法   总被引:1,自引:0,他引:1  
杜瓦是大面阵红外焦平面探测器组件的重要组成部分,为其提供光学、机械、热学和电学接口,因此对该杜瓦结构的可靠性有较高要求。由于此类产品样本数极少,传统的基于概率模型的可靠性设计方法在理论和应用上均存在较大的问题。有鉴于此,提出了基于区间分析的结构非概率可靠性模型,并将所建模型用于大面阵红外焦平面探测器杜瓦结构的可靠性优化设计。研究结果表明,非概率可靠性设计方法只要求已知设计参数的界限,而不要求其具体的分布形式,所需数据较少,特别适用于小子样大面阵红外焦平面探测器杜瓦的可靠性设计。  相似文献   

9.
余利泉  莫德锋  王镇  龚海梅 《红外》2019,40(4):1-11
红外焦平面探测器在航空、航天、军事等多个领域具有广泛应用。我国亟需发展大面阵、轻量化和高可靠性的红外焦平面探测器及其杜瓦组件。介绍了国内外红外探测器组件的冷平台材料选用情况,包括Fe-Ni膨胀合金、低膨胀高导热合金和新型陶瓷等。总结了红外焦平面探测器热失配应力的来源以及减小热失配应力的解决方案。最后给出了红外探测器研制过程中的冷平台材料选取建议以及在红外焦平面探测器组件发展趋势下需要重点研究的相关技术。  相似文献   

10.
红外探测器微型封装杜瓦瓶的传热学分析航天工业总公司三院八三五八所郭立春本文对多元红外探测器微型封装杜瓦瓶进行传热学方面的分析,内容包括:漏热分析和冷指底部传热分析。本文认为:多元微型杜瓦瓶的漏热直接影响节流式微型制冷器的耗气量,埋入式电极引线和薄膜式...  相似文献   

11.
王兆利  梁惊涛  赵密广  陈厚磊  王娟  卫铃佼 《红外与激光工程》2019,48(2):218006-0218006(11)
低温光学能够降低红外光学系统自身热噪声,有效提高探测灵敏度。支撑结构是实现光学系统在低温下正常工作的关键部件。设计的透射式低温光学系统工作温度为150 K,采用脉冲管制冷机这种新型机械式低温制冷机做冷源。因制冷机冷指直径较小,直接冷却光学透镜会在透镜内部产生较大温差,影响成像质量,为此设计了一种新型支撑结构,一方面设计了新型的轴向支撑和径向支撑用来减少透镜在低温下的形变,另一方面建立了透镜与脉冲管制冷机之间的传热模型,来指导支撑结构热设计,减小透镜内部温差。最后,对透镜支撑的低温性能进行了测试,实验结果表明,经过3 h,透镜温度由300 K降至150 K,支撑结构很好地保护了透镜并且在降温过程中透镜内部温差小于1 K。当温度从300 K降低到150 K时,光学表面的最大变形小于1(1=632.8 nm)。支撑结构从机械和热学性能上满足了低温光学系统的需要,为机械式制冷机冷却光学系统的光机结构设计提供了一种新选择。  相似文献   

12.
斯特林制冷机作为红外探测器的重要组成部分,可为红外探测器提供必需的低温工作环境,确保红外探测器正常工作,有效的斯特林制冷机散热设计,可提高红外探测器的工作性能。本文基于Ansys有限元软件,对不同制冷机驱动盖板结构的红外探测器组件进行了热仿真计算,结果表明,红外探测器组件内制冷机驱动板和电机外壳的温度较高,其最高温度出现在驱动板的驱动元器件位置。制冷机驱动盖板由平板式结构改为凸台式结构、增大驱动盖板和导热垫的导热系数可有效改善红外探测器组件的散热性能,红外探测器组件的最高温度可减小8.5%。  相似文献   

13.
由于能够减小系统自身的热噪声和提高系统信噪比,低温光学是实现高灵敏度红外探测的必要手段。提出了一种将脉冲管制冷机用作冷源的透射式低温光学系统。这种新型低温光学系统可用于体积和重量受限而又需要进行高灵敏度红外探测的场合。从光学设计、光机结构设计和内部热噪声分析等方面说明了透射式低温光学系统的设计过程。搭建了用于对脉冲管制冷机冷却光学系统的可行性进行验证的试验系统,并从系统内部热噪声的角度对低温光学的有效性进行了验证。实验结果表明,经过3 h,透镜温度由300 K降至设计温度150 K,继续降温则可达到最低温度105 K。测试过程中,透镜保持完好,验证了将脉冲管制冷机用作冷源的可行性。用黑体和320×256元碲镉汞探测器对光学系统自身的热噪声进行了测试。结果表明,当光学系统的温度从300 K降至215 K时,其自身热辐射减少了75%。这与理论分析结果一致,验证了低温光学降噪的有效性。  相似文献   

14.
于志  孟庆亮  于峰  聂云松  赵振明  郭楠 《红外与激光工程》2021,50(5):20200332-1-20200332-6
某新型对地观测空间相机已随新技术试验星成功发射入轨。相机运行于低轨倾斜圆轨道为非太阳同步轨道,其面临的空间外热流变化非常复杂。为了保证相机在轨稳定工作,光学系统和承力结构需要具有较高的温度稳定性,低温红外探测器需要配备大功率制冷机。复杂的外热流环境和高稳定度的指标要求给热控系统的设计研制带来了极大的挑战。根据任务特点和需求,对热控研制任务展开了分析,提出了借助卫星平台姿态规避,间接辐射控温以及±X侧耦合散热面等热控措施。热平衡试验与在轨飞行实测数据表明,相机光学系统的温度水平保持在(18±2) ℃范围内,稳定度优于±0.3 ℃/轨,满足相机各项温度指标,证明相机热控设计方案合理可行,相机在轨工作条件良好。  相似文献   

15.
杨森  刘碧强  蒋珍华  吴亦农 《红外》2018,39(5):25-30
针对一台U型一级斯特林二级脉管混合制冷机,分析了一级冷量对二级脉管预冷对制冷机整机性能的影响。制冷机一级制冷温度为80 K,二级制冷温度为30 K,通过将一级冷指和脉管热桥连接,利用一级提供的冷量对脉管进行了预冷。通过计算流体力学(Computer Fluid Dynamics, CFD)仿真研究了脉管预冷对脉管内部温度场和速度场的影响。研究发现,对脉管进行预冷会改变脉管工作时的内部温度分布,对二级制冷能力有巨大影响。在不采用一级冷量对脉管中段进行预冷时,制冷机以二级0.7W@30 K和一级7W@80 K同时进行冷量输出,压缩机输入PV功为133 W;通过热桥将一级冷端换热器与二级脉管中段连接后,保持输入PV功为133 W,输出冷量变为二级1.2W@30K和一级6W@80K同时进行冷量输出。研究发现,U型一级斯特林二级脉管混合制冷机采用中段脉管预冷可大大提高二级的制冷能力。  相似文献   

16.
张利明  刘伟  王冠  付志凯  于小兵 《红外》2022,43(11):20-25
针对某红外探测器工作时冷头结构发生异常、热阻变大以致冷头芯片不到温的现象,开展了相关研究。采用Ansys有限元软件对该红外探测器的冷头结构进行了仿真分析,并结合分析结果对其进行了优化设计。通过仿真分析发现,优化后的冷头结构在保证探测器芯片低温应力与低温变形的情况下,可以显著降低冷头表面及冷头结构件的应力。按照优化后的冷头结构来装配三个新状态的红外探测器组件,并对其进行了1000次的老炼实验。结果表明,实验前后冷头的强度、探测器响应的非均匀性和盲元率等关键指标并未发生变化;优化后冷头结构的可靠性更高,有利于探测器的长期使用;优化方案合理。  相似文献   

17.
周杨  蔡静 《红外》2017,38(11):27-33
利用ANSYS有限元仿真与试验研究了脉冲红外热波检测技术的影响因素。以玻璃钢、碳纤维及热障涂层三种材料为例进行了仿真,重点研究了环境、被测材料自身缺陷等因素对脉冲红外热波检测的影响,并对玻璃钢和碳纤维两种材料的检测能力进行了判定。对碳纤维和玻璃钢材料进行了试验,研究了实验条件对检测效果的影响,并给出了玻璃钢和碳纤维两种材料的最佳实验参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号