首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local structure and the photoactivity of B2O3–SiO2/TiO2 ternary mixed oxides (SiO2 content was fixed as 30 at.% with respect to TiO2) was investigated by using XRD, FT-IR, BET, UV-vis spectra, and electron paramagnetic resonance (EPR) measurement. In FT-IR analysis, boron was incorporated into the framework of titania matrix with replacing Ti---O---Si with Si---O---B or Ti---O---B bonds. Also, paramagnetic species such as O and Ti3+ defects were formed by the boron incorporation. In SiO2/TiO2 mixed oxides, a blue shift in the light absorption band was observed due to the quantization of band structure. All B2O3–SiO2/TiO2 samples had pure anatase phase and no rutile phase was formed even though the calcination temperature was over 900 °C. Incorporating boron oxides of more than 10% enlarges the grain size of anatase phase and causes a red shift of the light absorption spectrum. The surface area was monotonically decreased with increasing the content of boron content. As a result, the photoactivity of B2O3–SiO2/TiO2 ternary mixed oxides was greatly influenced by the content of boron oxide. The highest photoactivity (g moles/min l) was obtained when the boron content was 5% and seven times higher than that of silica/titania binary mixed oxide. In addition, the specific photoactivity (g moles/m2 l) was maximum still at 5%. It was concluded that the large reduction of surface area, the change of band structure, and more formation of bulk Ti3+ sites are responsible for the deterioration in the photoactivity of B2O3–SiO2/TiO2 ternary mixed oxides when the content of boron is over 10%, although their crystallinity was enhanced by increasing the calcination temperature with keeping anatase phase.  相似文献   

2.
Nanosized pure TiO2 particles were prepared by hydrolysis of TTIP in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. TiO2/SiO2 nanoparticles were also prepared from TEOS as a silicon source and TTIP as a titanium source. These particles were characterized by TEM, XRD, FT-IR, BET, TGA and DTA. From thermal analysis and XRD analysis, the anatase structure of pure titania appeared in the 300–600 °C calcination temperature range and the rutile structure was showed above 700 °C. However, no rutile phase was observed for the TiO2/SiO2 particles up to 800 °C. The crystallite size decreased and the surface area of TiO2/SiO2 particles monotonically increased with an increase of the silica content. From FT-IR analysis, the band for Ti–O–Si vibration was observed and the band intensity for Si–O–Si vibration increased with an increase of the silica content. The micrographs of TEM showed that the TiO2/SiO2 nanoparticles had a spherical and a narrow size distribution. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (90/10) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol.  相似文献   

3.
Hu Chun  Tang Yuchao  Tang Hongxiao 《Catalysis Today》2004,90(3-4):325-materials
TM/TiO2/SiO2 photocatalysts were prepared by the photodeposition method using transition metal salts (TM=Fe3+, Co2+, Ni2+ and Cu2+) as precursors and the surface bond-conjugated TiO2/SiO2 as supporter in N2 atmosphere, and were characterized by XRD, XPS, UV-Vis diffuse reflection and zeta-potential. Their photocatalytic activities were evaluated using reactive brilliant red K-2G (K-2G) and cationic blue X-GRL (CBX) showing different adsorption behavior on the oxides. Fe, Cu supported TiO2/SiO2 can efficiently extend the light absorption to the visible region. XPS analysis verified that the introduction of transition metal lead to the changes of the electronic environmental of Ti cations and the zeta-potential of oxides. As a result, K-2G has higher adsorption on the modified TiO2/SiO2 than that on the baked one, while the adsorption of CBX has a little change on the both oxides. At the same time, for the photodegradation of K-2G, Fe3+, Co2+, Ni2+-modified catalysts show that their photoactivities are 3.3–2.2 times higher than the bare one. On the contrast, all transition-metal-supported catalysts have no significant activity improvement except that Fe/TiO2/SiO2 shows 1.68 times higher activity for the photodegradation of CBX. The results indicate that the photoactivity could be increased in photodegradation of dyes by changing the performances of adsorption to dyes and absorption to light of photocatalyst.  相似文献   

4.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

5.
TiO2 nanocrystalline particles dispersed in SiO2 have been prepared by the sol-gel method using titanium- and silicon-alkoxides as precursors. Nano-composite thin films were formed on the glass substrates by dip-coating technique and heat treated at temperatures up to 500 °C for 1 h. The size of the TiO2 nanocrystalline particles in the TiO2–SiO2 solution ranged from 5 to 8 nm. The crystalline structure of TiO2 powders was identified as the anatase phase. As the content of SiO2 increased, the anatase phase tended to be stabilized to higher temperature. TEM results revealed the presence of spherical TiO2 particles dispersed in a disk-shaped glassy matrix. Photocatalytic activity of the TiO2–SiO2 (1:1) thin films showed decomposition of 95% of methylene blue solution in 2 h and a contact angle of 10°. The photocatalytic decomposition of methylene blue increased and the contact angle decreased with the content of TiO2 phase. TiO2–SiO2 with the molar ratio of 1:1 showed a reasonable combination of adhesion, film strength, and the photocatalytic activity.  相似文献   

6.
TiO2-SiO2 with various compositions prepared by the coprecipitation method and vanadia loaded on TiO2-SiO2 were investigated with respect to their physico-chemical characteristics and catalytic behavior in SCR of NO by NH3 and in the undesired oxidation of SO2 to SO3, using BET, XRD, XPS, NH3-TPD, acidity measurement by the titration method and activity test. TiO2-SiO2, compared with pure TiO2, exhibits a remarkably stronger acidity, a higher BET surface area, a lower crystallinity of anatase titania and results in allowing a good thermal stability and a higher vanadia dispersion on the support up to high loadings of 15 wt% V2O5. The SCR activity and N2 selectivity are found to be more excellent over vanadia loaded on TiO2-SiO2 with 10–20 mol% of SiO2 than over that on pure TiO2, and this is considered to be associated with highly dispersed vanadia on the supports and large amounts of NH3 adsorbed on the catalysts. With increasing SiO2 content, the remarkable activity decrease in the oxidation of SO2 to SO3, favorable for industrial SCR catalysts, was also observed, strongly depending on the existence of vanadium species of the oxidation state close to V4+ on TiO2-SiO2, while V5+ exists on TiO2, according to XPS. It is concluded that vanadia loaded on Ti-rich TiO2-SiO2 with low SiO2 content is suitable as SCR catalysts for sulfur-containing exhaust gases due to showing not only the excellent de-NOx activity but also the low SO2 oxidation performance.  相似文献   

7.
The influence of different metal oxide supports (i.e. ZrO2, ThO2, UO2, TiO2 and SiO2) on the performance of Ni- and/or Co-containing catalysts [Ni and/or Co/MO2 mole ratio (where M=Zr, Th, U, Ti or Si)=1.0] in the oxidative methane-to-syngas conversion at very low contact time (GHSV=5.2×105 cm3 g−1 h−1 at STP) was investigated. The nickel-containing ZrO2, ThO2 and UO2 catalysts (with or without pre-reduction by hydrogen at 500°C) showed good performance in the process; the order of their performance is NiO–ThO2>NiO–UO2>NiO–ZrO2. The NiO–TiO2 showed appreciable catalytic activity only after its reduction at 800°C. However, this catalyst and the NiO–SiO2 catalyst showed poor performance in the process. These two catalysts are also deactivated very fast, mostly because of sintering of Ni and/or formation of catalytically inactive binary metal oxide phases by solid–solid reaction at the high catalyst calcination and/or catalytic reaction temperature. Although the Ni-containing ThO2, UO2 and ZrO2 catalysts showed good performance, carbon deposition on them during the process is fast. However, because of the addition of cobalt to these catalysts (with Co/Ni=1.0), the rate of carbon deposition on them in the process is drastically reduced. This Co addition however resulted in a significant decrease in both the conversion and selectivity; the decrease in the selectivity was small.  相似文献   

8.
Catalytic wall (structured) reactors and structured supports are suitable to study the catalytic properties of nanosized materials. The coating of metallic (aluminum and stainless steel) plates by thin layers of active phase is presented in two cases, VOx/TiO2 and Co/SiO2, catalysts used in the oxidative dehydrogenation (ODH) of propane and in Fischer–Tropsch synthesis (FTS) of clean fuels, respectively. The preparation of coated plates and their characterisation by various methods of physicochemical analysis are described. Both chemical and physical methods were used for coating. VOx/TiO2 layers were obtained by grafting of Ti (on Al or stainless-steel plates) and V (on TiO2) alkoxides and use of sol–gel media or suspension. A silica primer was deposited (on stainless-steel plate) by plasma-assisted chemical vapour deposition (PACVD) onto which Co oxide and silica were coprecipitated from sol–gel. The catalytic experiments in the respective reactions were carried out in special plate reactors and compared with those of catalytic powders. The study shows that the coating of a metallic substrate by a catalyst is not straightforward and requires specific studies dealing with both chemistry (chemical affinity between substrate and catalytic layers) and catalytic engineering (catalytic performance in taylor-made reactors).  相似文献   

9.
TiO2–SiO2 mixed oxides were prepared by sol–gel processes with one-stage (mix up fully hydrolyzed titania- and silica-sol), two-stage (with pre-hydrolysis) and modified two-stage synthesis routes. The photoresponse and AC impedance characterization of the derived catalysts are studied and correlated for the first time with the photocatalytic activities in water decomposition under UV illumination. Synergistic effects in terms of photocatalytic activity and electronic properties including band-gap energy, flat band potential and doping density were observed on atomically mixing TiO2 and SiO2 by the two-stage synthesis route. Meanwhile, the decline of photocurrent density were found on TiO2–SiO2 relative to bare TiO2, which could be attributed to low quality crystalline structure of the former compared to that of the latter. The superior photocatalytic performance of TiO2–SiO2 is ascribed to the higher flat band potential, band-gap energy, and doping density than those of bare TiO2.  相似文献   

10.
Coupled semiconductor (CS) Cu/CdS–TiO2/SiO2 photocatalyst was prepared using a mutli-step impregnation method. Its optical property was characterized by UV–vis spectra. BET, XRD, Raman and IR were used to study the structure of the photocatalyst. Fine CdS was found dispersed over the surface of anatase TiO2/SiO2 substrate. Chemisorption and IR analysis showed methane absorbed in the molecular state interacted weakly with the surface of catalyst, and the interaction of CO2 with CS produced various forms of absorbed CO2 species that were primarily present in the form of formate, bidentate and linear absorption species. Photocatalytic direct conversion of CH4 and CO2 was performed under the operation conditions: 373 K, 1:1 of CO2/CH4, 1 atm, space velocity of 200 h−1 and UV intensity of 20.0 mW/cm2. The conversion was 1.47% for CH4 and 0.74% for CO2 with a selectivity of acetone up to 92.3%. The reaction mechanisms were proposed based on the experimental observations.  相似文献   

11.
The hydrogenation of CO over an Rh vanadate (RhVO4) catalyst supported on SiO2 (RhVO4/SiO2) has been investigated after H2 reduction at 500°C, and the results are compared with those of vanadia-promoted (V2O5–Rh/SiO2) and unpromoted Rh/SiO2 catalysts. The mean size of Rh particles, which were dispersed by the decomposition of RhVO4 after the H2 reduction, was smaller (41 Å) than those (91–101 Å) of V2O5–Rh/SiO2 and Rh/SiO2 catalysts. The RhVO4/SiO2 catalyst showed higher activity and selectivity to C2 oxygenates than the unpromoted Rh/SiO2 catalyst after the H2 pretreatment. The CO conversion of the RhVO4/SiO2 catalyst was much higher than that of V2O5–Rh/SiO2 catalyst, and the yield of C2 oxygenates increased. We also found that the RhVO4/SiO2 catalyst can be regenerated by calcination or O2 treatment at high temperature after the reaction.  相似文献   

12.
A systematic reactivity study of N2O, NO, and NO2 on highly dispersed CuO phases over modified silica supports (SiO2–Al2O3, SiO2–TiO2, and SiO2–ZrO2) has been performed. Different reaction paths for the nitrogen oxide species abatement were studied: from direct decomposition (N2O) to selective reductions by hydrocarbons (N2O, NO, and NO2) and oxidation (NO to NO2). The oxygen concentration, temperature, and contact time, were varied within suitable ranges in order to investigate the activity and in particular the selectivity in the different reactions studied. The support deeply influenced the catalytic properties of the active copper phase. The most acidic supports, SiO2–Al2O3 and SiO2–ZrO2, led to a better activity and selectivity of CuO for the reactions of N2O, NO, and NO2 reductions and N2O decomposition than SiO2–TiO2. The catalytic results are discussed in terms of actual turnover frequencies starting from the knowledge of the copper dispersion values.  相似文献   

13.
Plasma/catalyst combination is an active solution to reach high conversion rates at low energetic cost. TiO2 is one of the catalysts frequently used in dielectric barrier discharges. Plasma/TiO2 synergy was already exhibited but the mechanisms still have to be understood. This work distinguishes three main effects involved in the synergy: (a) effect of catalyst on the injected power, (b) the effect of porosity on C2H2 oxidation, and (c) the photocatalytic degradation of C2H2 on TiO2 under plasma exposure. Different glass fibres-based catalytic materials coated with SiO2 and/or TiO2 nano-particles are used to separate these three contributions regarding to C2H2 conversion. It is reported that at constant voltage the injected power is mainly increased by the presence of glass fibres. C2H2 oxidation is mainly enhanced by the macroporosity of glass fibres and in a minor way by the nano-particles. The production of O atoms close to the surface is probably responsible for the higher C2H2 removal efficiency with porous material. The photocatalytic activity of TiO2 is negligible in the plasma except if additional UV lamps are used to activate TiO2. With external UV, photocatalytic activity is more efficient in the plasma phase than in a neutral gas phase. This plasma/photocatalysis synergy is due to the use of O atoms in photocatalytic mechanisms.  相似文献   

14.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

15.
Marí  a-Jos  L  pez-Mu  oz  Rafael van Grieken  Jos  Aguado  Javier Marug  n 《Catalysis Today》2005,101(3-4):307-314
Immobilization of TiO2 on silica materials has been commonly proposed in order to make easier the separation of the catalyst after the photocatalytic reactions in aqueous systems. The main drawback of the supported photocatalysts is that they usually show lower activities in comparison with powdered TiO2 materials. The aim of this work is to elucidate the structure of some silica-supported TiO2 photocatalysts recently developed as well as to evaluate the role that the porous structure of the support can play in the observed photocatalytic activities. In comparison with the use of an amorphous silica support, the use of the mesostructured silica SBA-15 produces an ordered structure in which TiO2 crystals of similar sizes, independently of titania loading, are located inside the mesoporous channels of the support. The photocatalytic treatment of several cyanide-containing compounds is analyzed and the results are explained in terms of the structure of every catalyst. Depending on the model compound, the characteristic structure of the TiO2/SBA-15 materials allows increasing up to eight times the activity achieved by the Degussa P25 TiO2. The main conclusion of this work is the strong influence of the textural properties of the support on the catalytic activity of immobilized TiO2 photocatalysts.  相似文献   

16.
The distribution of two different phases in a mixed oxide material could be investigated through several physicochemical characterization techniques. However, the estimation of the fraction of the total surface area corresponding to each oxide is a very difficult task. In this work, we present a novel procedure for the determination of the titanium dioxide surface in titania–silica materials. This new method is based on the measurement of the phosphorus content of the mixed oxide after reaction with phenylphosphonic acid. The quantification of the TiO2 surface has permitted the comparison of the catalytic activity of different materials in processes in which titanium dioxide is the only catalytically active phase and silica behaves as an inert support, as, for instance, in photocatalytic reactions. The activity of several TiO2/SiO2 photocatalysts for cyanide and methanol photooxidation have been analysed and compared with pure TiO2 materials in terms of equal mass of semiconductor, photonic efficiency and active surface area. The results suggest the possibility of achieving surface activity rates even higher than the material Degussa P25 when using nanocrystalline titania supported on silica.  相似文献   

17.
The TiO2/substrate pearlescent pigments were prepared by the hydrolysis of TiOCl2 on the substrate followed by a calcinations process. The natural mica (muscovite), synthetic mica (fluorophlogopite) and -alumina flake were selected as the substrates for pearlescent pigments. The effect of substrate on the anatase to rutile (A–R) phase transformation of TiO2 was studied. The A–R phase transformation of TiO2 during the preparation of pearlescent pigments and their proportion in the TiO2 layer have been analyzed by XRD measurements. The phase compositions of TiO2 layer in each pearlescent pigment are quite different depending on the substrates. The TiO2 layer deposited on -alumina has higher rutile fraction than those on the natural and synthetic mica. The XPS analysis showed that the cations originally present in the substrates diffused into the TiO2 layer. The TiO2 layer deposited on -alumina contains Al, while those on the natural and synthetic mica substrates contain Si and K in addition to Al. The metal cations diffusing from the substrate into TiO2 layer might retard the A–R phase transformation of TiO2. The suppressing effect on the A–R transformation of TiO2 by mixed cations seems to be much stronger than that of single cation, resulting in relatively higher rutile fraction in the case of TiO2 layer deposited on -alumina.  相似文献   

18.
采用喷雾分散-油柱成型制备方法,以硅溶胶为硅源,制备不同含量SiO2掺杂改性的微球形氧化铝载体,研究SiO2含量对氧化铝载体结构及以其为载体的负载型催化剂性能的影响。研究表明,通过掺杂SiO2有效改善了氧化铝微球的热稳定性,且氧化铝载体的孔容、比表面积及酸中心数量均随SiO2含量的增加而增加,孔径随SiO2含量的增加而减小。Pd/SiO2-Al2O3催化剂结构表征及流化床蒽醌加氢性能评价结果表明,掺杂SiO2质量分数6%时,Pd/SiO2-Al2O3催化剂氢化效率大于12.5g·L^-1,选择性大于98.3%。  相似文献   

19.
Composite types of TiO2–Al2O3 supports, which are γ-aluminas coated by titania, have been prepared by chemical vapor deposition (CVD), using TiCl4 as a precursor. Then supported molybdenum catalysts have been prepared by an impregnation method. As supports, we employed γ-alumina, anatase types of titania, and composite types of TiO2–Al2O3 with different loadings of TiO2. We studied the conversion of Mo from oxidic to sulfidic state through sulfurization by X-ray photoelectron spectroscopy (XPS). The obtained spectra unambiguously revealed the higher reducibility from oxidic to sulfidic molybdenum species on the TiO2 and TiO2–Al2O3 supports compared to that on the Al2O3 support. Higher TiO2 loadings of the TiO2–Al2O3 composite support led to higher reducibility for molybdenum species. Furthermore, the catalytic behavior of supported molybdenum catalysts has been investigated for hydrodesulfurization (HDS) of dibenzothiophene (DBT) and methyl-substituted DBT derivatives. The conversion over the TiO2–Al2O3 supported Mo catalysts, in particular for the 4,6-dimethyl-DBT, is much higher than that obtained over Al2O3 supported Mo catalyst. The ratio of the corresponding cyclohexylbenzene (CHB)/biphenyl (BP) derivatives is increased over the Mo/TiO2–Al2O3. This indicates that the prehydrogenation of an aromatic ring plays an important role in the HDS of DBT derivatives over TiO2–Al2O3 supported catalysts.  相似文献   

20.
The photocatalytic inactivation of pathogenic bacteria in water was investigated systematically with AgBr/TiO2 under visible light (λ > 420 nm) irradiation. The catalyst was found to be highly effective for the killing of Escherichia coli, a Gram-negative bacterium, and Staphylococcus aureus, a Gram-positive bacterium. The decomposition of the cell wall and cell membrane was directly observed by TEM and further confirmed by K+ leakage from the inactivated bacteria. A possible cell damage mechanism by visible light-driven AgBr/TiO2 is proposed. In addition, the effects of pH, inorganic ions on bacterial photocatalytic inactivation were investigated. The electrostatic force interaction of the bacteria–catalyst is crucial for the efficiency of disinfection. Moreover, AgBr/TiO2 supported on porous nickel showed much higher bactericidal activity than fixed P25 TiO2 under visible or near UV light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号