首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructured titania (TiO2) coatings were produced by high-velocity oxyfuel (HVOF) spraying. They were engineered as a possible candidate to replace hydroxyapatite (HA) coatings produced by thermal spray on implants. The HVOF sprayed nanostructured titania coatings exhibited mechanical properties, such as hardness and bond strength, much superior to those of HA thermal spray coatings. In addition to these characteristics, the surface of the nanostructured coatings exhibited regions with nanotextured features originating from the semimolten nanostructured feedstock particles. It is hypothesized that these regions may enhance osteoblast adhesion on the coating by creating a better interaction with adhesion proteins, such as fibronectin, which exhibit dimensions in the order of nanometers. Preliminary osteoblast cell culture demonstrated that this type of HVOF sprayed nanostructured titania coating supported osteoblast cell growth and did not negatively affect cell viability. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

2.
Nanostructured WC-12% Co coatings were deposited by suspension plasma spraying of submicron feedstock powders, using an internal injection plasma torch. The liquid carrier used in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to thin coatings with a fine surface finish. A polyethylene-imine (PEI) dispersant was used to stabilize the colloidal suspension in an ethanol carrier. In-flight particle states were measured for a number of operating conditions of varying plasma gas flow rates, feed rates, and standoff distances and were related to the resulting microstructure, phase composition (EDS, SEM, XRD), and Vickers hardness. High in-flight particle velocities (>800 m/s) were generated, leading to dense coatings. It was observed that the coating quality was generally compromised by the high temperature and reactivity of the small particles. To compensate for this shortcoming, the suspension feed rate was adjusted, thereby varying the thermal load on the plasma. Results showed that a slightly larger agglomerate size, in conjunction with low particle jet temperatures, could somewhat limit the decomposition of WC into brittle W2C/W3C and amorphous cobalt containing binder phases. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

3.
This paper proposes a comparative study on the microstructure and photocatalytic performances of titanium dioxide coatings elaborated by various thermal spraying methods (plasma spraying in atmospheric conditions, suspension plasma spraying, and high-velocity oxyfuel spraying). Agglomerated spray dried anatase TiO2 powder was used as feedstock material for spraying. Morphology and microstructural characteristics of the coatings were studied mainly by scanning electron microscopy and x-ray diffraction. The photocatalytic behavior of the TiO2-base surfaces was evaluated from the conversion rate of gaseous nitrogen oxides (NOx). It was found that the crystalline structure depended strongly on the technique of thermal spraying deposition. Moreover, a high amount of anatase was suitable for the photocatalytic degradation of the pollutants. Suspension plasma spraying has allowed retention of the original anatase phase and for very reactive TiO2 surfaces to be obtained for the removal of nitrogen oxides. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

4.
In this work, one- and two-step laser dispersing of Ti6Al4V surfaces by use of elemental boron (B) as well as TiB2, ZrB2, and CrB2 was carried out with CO2 and Nd:YAG lasers using an adapted apparatus to provide inert conditions. Depending on the laser system, melt pool depths between 200 μm and more than 1000 μm were achieved, and the boride precipitates allowed an increase of the surface hardness from 350 HV0.05 in the initial state to more than 600 HV0.05. The modified surface areas were characterized by means of optical microscopy, scanning electron microscopy, and EDXS. Oscillating and cavitation erosion wear tests were carried out. For reinforcement of component surfaces with complex shape, a two-step laser deposition process and a technology for predeposition of diboride layers with defined thickness is required. The applicability of vacuum plasma spraying for predeposition is discussed. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

5.
Control of the microstructure of TiO2 coatings through preparation methods significantly influences the coating performance. In this study, a vacuum cold-spray process, as a new coating technology, is used to deposit nanocrystalline TiO2 coatings on conducting glass and stainless steel substrates. TiO2 deposits were formed using two types of nanocrystalline TiO2 powders with mean particle diameters of 200 and 25 nm. Coating microstructures were characterized by scanning electron microscopy and x-ray diffraction analysis. Results demonstrate that a thick nanocrystalline TiO2 coating can be deposited by the vacuum cold-spray process. The coating was found to consist of particles stacked as agglomerates that build up to several hundred nanometers. The coating also presents a mesoporous microstructure that could be effective in such applications as photocatalytic degradation and dye-sensitized solar cells. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

6.
采用激光与等离子复合热源喷涂技术,在38CrMoA1基体上制备NiCr-Cr3C2涂层,对涂层的结合强度、显微硬度、微观组织结构以及抗高温滑动摩擦磨损性能等进行了测试分析.结果表明,与传统的等离子喷涂层相比,复合热源喷涂时,NiCr-Cr2C2粉末受热熔融更充分,流动性好,铺展均匀.涂层实现了冶金结合,具有更高的结合强...  相似文献   

7.
Cu2+ was added to liquid feedstock to deposit ion doping TiO2 photocatalytic coatings through liquid flame spraying. The coating microstructure was characterized by x-ray diffraction (XRD), transmission electron microscopy, and x-ray photoelectron spectroscopy (XPS). The photocatalytic performance of coatings was examined by photodegradation of acetaldehyde. The XRD analysis shows that the crystalline structure of coatings is not significantly influenced by Cu2+ doping. The photocatalytic activity of the TiO2 coatings is enhanced by Cu2+ doping. It is found that a high concentration of Cu2+ doping decreases the activity. The XPS analysis shows that the adsorbed oxygen concentration is increased with the increase of Cu2+ dopant concentration and decreases with a further increase of dopant concentration. The enhancement of photocatalytic activity can be attributed to the adsorption ability of oxygen and other reactants on the surface of doping TiO2 coatings. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

8.
This paper describes formation of titanium dioxide coatings designed for photocatalytic applications, obtained by suspension plasma spraying (SPS), an alternative of the atmospheric plasma spraying (APS) technique in which the material feedstock is a suspension of the material to be sprayed. Two different TiO2 powders were dispersed in distilled water and ethanol and injected in Ar-H2 or Ar-H2-He plasma under atmospheric conditions. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) analyses were performed to study the microstructure of the titania coatings. Photocatalytic efficiency of the elaborated samples was evaluated from the conversion ratio of different air pollutants: nitrogen oxides (NOx) and sulfur dioxide (SO2). The morphology and crystalline structure of the deposits depended mainly on the nature of the solvent (water or alcohol) used in the preparation of the slurries. Dense coatings were obtained starting from aqueous suspensions and porous deposits were elaborated by plasma spraying of a PC105 alcoholic suspension. A significant phase transformation from anatase to rutile occurred when ethanol was used as a solvent. Different photocatalytic performances were observed as a function of the nature of the liquid material feed-stock, the spraying parameters, and the nature of the pollutant. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

9.
Yttria doped zirconia has been widely used as electrolyte materials for solid oxide fuel cells (SOFC). Plasma spraying is a cost-effective process to deposit YSZ electrolyte. In this study, the 8 mol% Y2O3 stabilized ZrO2 (YSZ) layer was deposited by low pressure plasma spraying (LPPS) and atmospheric plasma spraying (APS) with fused-crushed and agglomerated powders to examine the effect of spray method and particle size on the electrical conductivity and gas permeability of YSZ coating. The microstructure of YSZ coating was characterized by scanning electron microscopy and x-ray diffraction analysis. The results showed that the gas permeability was significantly influenced by powder structure. The gas permeability of YSZ coating deposited by fused-crushed powder is one order lower in magnitude than that by agglomerated powder. Moreover, the gas permeability of YSZ deposited by LPPS is lower than that of APS YSZ. The electrical conductivity of the deposits through thickness direction was measured by potentiostat/galvanostat based on three-electrode assembly approach. The electrical conductivity of YSZ coating deposited by low pressure plasma spraying with fused-crushed powder of small particle size was 0.043 S cm−1 at 100 °C, which is about 20% higher than that of atmospheric plasma spraying YSZ with the same powder. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

10.
The authors have confirmed that in the thermal spraying of practical powder materials, the splat shape changes with increasing substrate temperature to a circular disk shape from a fringe shape with splashing at a critical substrate temperature,T t. The increase of the substrate temperature may accompany a kind of essential change on the substrate surface, because the effect is maintained until the substrate is cooled down to room temperature. However, the nature of the substrate surface change due to the heating has not been clearly understood yet. In this study, AISI 304 stainless steel was used as a substrate material, and the substrate was heated in an air at mosphere or laser treated as a pretreatment. Substrate surface topography in nanometer scale was analyzed precisely by atomic force microscope (AFM). The relationship between surface topography in nanometer scale and splat morphology was discussed. Moreover, to evaluate the effect of chemical composition of the substrate surface, gold was coated onto the substrate surface by physical vapor deposition (PVD) after the heat treatment. The effect of adsorbate/condensate on the substrate surface on the flattening behavior of thermal sprayed particles was also verified. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

11.
Precursor plasma spray synthesis is an innovative and rapid method for making functional oxide ceramic coatings by starting from solution precursors and directly producing inorganic films. This emerging method utilizes molecularly mixed precursor liquids, which essentially avoids the handling and selection of powders, opening up new avenues for developing compositionally complex functional oxide coatings. Precursor plasma spray also offers excellent opportunities for exploring the nonequilibrium phase evolution during plasma spraying of multicomponent oxides from inorganic precursors. Although there have been efforts in this area since the 1980s and early 1990s with the goal of synthesizing nanoparticles, only recently has the work progressed in the area of functional systems. At the Center for Thermal Spray Research an integrated investigative strategy has been used to explore the benefits and limits of this synthesis strategy. Water- and alcohol-based sol/solution precursors derived from various chemical synthesis methods were used as feedstocks to deposit thin/thick films of spherical and nanostructured coatings of yttrium aluminum garnet (YAG), yttrium iron garnet, lanthanum strontium manganate and Zr-substituted yttrium titanates, and compositions of Y2O3-Al2O3 and their microstructural space centered around stoichiometric YAG. A detailed discussion of the salient features of the radiofrequency induction plasma spraying approach, the results obtained in the investigations to develop various functional oxide coatings, and process issues and challenges are presented. This article was originally published inBuilding on 100 Years of Success: Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

12.
In the current study, Cr3C2-NiCr coating was deposited on the Ni-base superalloys by using high velocity oxyfuel (HVOF) process for high temperature corrosive environment applications. Optical microscopy (OM), x-ray diffraction (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX), microhardness tester, and electro probe microanalyzer (EMPA) techniques were used to characterize the coating with regard to coating thickness, porosity, microhardness, and microstructure. The thermogravimetric technique was used to establish kinetics of corrosion. The hot corrosion behaviors of the bare and Cr3C2-NiCr coated superalloys were studied after exposure to aggressive environment of Na2SO4-60% V2O5 salt mixture at 900 °C under cyclic conditions. The structure of the as-sprayed Cr3C2-NiCr coating mainly consisted of γ-nickel solid solution along with minor phases of Cr7C3 and Cr2O3. Coating has porosity less than 1.5% and microhardness in the range of 850–900 Hv (Vickers hardness). Some inclusions, unmelted and semimelted powder particles were observed in the structure of the coatings. The Cr3C2-NiCr coating has imparted necessary resistance to hot corrosion, which has been attributed to the formation of oxides of nickel and chromium, and spinel of nickel-chromium. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

13.
High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

14.
The tribological behaviour of Al2O3 coatings on AISI 316 stainless steel, obtained by the process of controlled atmosphere plasma spraying (CAPS), is studied in this work. Atmospheric plasma spraying (APS) and high pressure plasma spraying (HPPS) were applied in order to produce these coatings. The APS coatings exhibited lower microhardness values compared to the values of HPPS coatings. Regarding the HPPS coatings it was found that plasma composition, through its heat capacity, does influence the heat transfer to particles, and, consequently, their flattening and densification process, which govern coating properties. It was revealed that tribological behaviour of coatings was influenced by the applied spraying method too. Coatings from HPPS under high-enthalpy conditions led to worst wear behaviour. In general, properties, such as microstructure, microhardness, coefficient of friction and wear resistance depended on the processing conditions such as pressure and composition of the spraying chamber atmosphere.  相似文献   

15.
Deposition of nanocrystalline TiO2 coating at low temperature is becoming more attractive due to the possibility for continuous roll production of the coating for assembly lines of dye-sensitized solar cell (DSC) at a low cost. In this study, porous nano-TiO2 coating was deposited by vacuum cold spraying (VCS) at room temperature on a conducting glass substrate using commercial P25 nanocrystalline TiO2 powder. The microstructure of TiO2 coating was characterized by field emission scanning electron microscopy (FESEM) and nitrogen adsorption test. A commercial dye (N719) was adsorbed on the surface of TiO2 particles within the coating to assemble a DSC. The cell performance was evaluated by employing simulated solar light at an intensity of 100 mW/cm2. The results showed that TiO2 coating was deposited by the agglomerates of nano-TiO2 powders. The Brunauer-Emmett-Teller (BET) test of the as-sprayed TiO2 coating yielded a porosity of 49% and an average pore size of 17 nm. The assembled solar cell yielded a short-circuit current density of 7.3 mA/cm2 and an energy conversion efficiency of 2.4%. The test results indicate that VCS was a promising method to deposit nanocrystalline TiO2 coatings at low temperature applied to DSCs. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

16.
An agglomerated Cr2O3/wt.%TiO2 powder has been fabricated by the spray drying process under different parameters. The spray-dried powder has well-agglomerated particles of spherical shape. In the conditions of the high slurry feed rate and low binder concentration in the slurry, the powder has large cavities inside some particles and ruggedness over their surface. The optimum plasma spray feed rate has been found by examining the spraying behavior of the powder and melted state of particles. The plasma spray coating has been performed under different process variables such as spraying distance and plasma power. These parameters strongly affect the characteristics of the coated layer: microstructure, hardness, and bond strength.  相似文献   

17.
Hydroxyapatite (HAp Ca10(PO4)6(OH)2) is known to be a biomaterial and an adsorbent for chromatography. In this study, HAp was agglomerated with anatase TiO2 to manufacture thermal-spray powders to improve the adsorption activity of TiO2, and then to improve its photocatalytic activity. The microstructures, compositions and photocatalytic activity of plasma-sprayed TiO2, TiO2-10%HAp, TiO2-30%HAp, and HAp coatings were investigated. Due to the low thermal conductivity of HAp compound, not all HAp particles fully melted even under the arc current of 800 A. The addition of HAp inhibited the phase transformation of anatase TiO2 to rutile. Under the arc current of 600 A, the anatase content in the TiO2, TiO2-10%HAp and TiO2-30%HAp coatings was 11, 20 and 42%, respectively. With the increasing of the spraying distance from 70 to 110 mm, the anatase content in the TiO2-30%HAp coatings decreased from 34 to 17% under arc current of 700 A. Furthermore, a slight decomposition of HAp to α-Ca3(PO4)2 was found in the TiO2-30%HAp coatings, it did not decompose to CaO and P2O5 according to the XRD and EDAX analysis. The addition of the secondary gas of helium had no significant influence on the melting state of the TiO2-HAp feedstock powders. Moreover, the HAp in the TiO2-10%HAp and TiO2-30%HAp coatings had adsorption characteristic to acetaldehyde. The photocatalytic activity of TiO2-10%HAp coating was highest among TiO2, TiO2-10%HAp, and TiO2-30%HAp coatings sprayed under the arc current of 600 A for the optimum adsorption property and anatase content. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

18.
In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

19.
The mechanisms that govern microstructure evolution during reactive plasma spraying of MoSiz using 100% methane were investigated, with particular emphasis on the thermodynamics and kinetics of the relevant phase transformations and chemical reactions. The reactive plasma-sprayed M0Si2 exhibited a dense, multilayered microstructure. In addition to the M0Si2 matrix, significant amounts of M05Si3 and elemental carbon were observed, along with a small amount of SiC. Thermodynamic and kinetic analysis predicted a large volume fraction of M05Si3 and a small amount of SiC in the as-deposited reactive plasma-sprayed MoSi2, in agreement with the experimental observations.  相似文献   

20.
A new synthesis process, laser ablation in an aqueous solution of target material, was applied to synthesize nanostructured CeO2/TiO2 catalyst particles. Reactivity within the laser plume (plasma) can be used to synthesize CeO2 from an aqueous solution, 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution, and to fabricate TiO2 from Ti target. CeO2/TiO2 nanoparticles were successfully synthesized by the laser ablation of Ti target in 2 M cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) aqueous solution. Laser ablation of Ti in a liquid environment and chemical reactions of the solution within a plasma plume are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号