首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activation of the multicomponent interleukin-2 receptor (IL-2R) complex leads to a rapid increase in tyrosine phosphorylation of a number of cellular proteins including the IL-2R beta and IL-2R gamma chains of the IL-2R and the RAF-1 serine threonine kinase. In addition, phosphatidylinositol 3-kinase (PI-3K) protein and activity can be immunoprecipitated with anti-phosphotyrosine and anti-IL-2R beta antibodies from IL-2-activated but not resting T lymphocytes. We have demonstrated that the SH2 (SRC homology 2) domains of the 85 kDa subunit of PI-3K are sufficient to mediate binding of the PI-3K complex to tyrosine phosphorylated, but not non-phosphorylated IL-2R beta, suggesting that tyrosine phosphorylation is an integral component of the activation of PI-3K by the IL-2R. Since none of the members of the IL-2R complex contains an intrinsic tyrosine kinase domain, IL-2-induced tyrosine phosphorylation must be the consequence of activation of intracellular tyrosine kinases. SRC family members including lck, lyn and fyn have been demonstrated to associate with IL-2R beta through binding of the kinase domain to the acidic domain of IL-2R beta. However, we have demonstrated that the serine rich (SD) region of the cytosolic domain of IL-2R beta is also required for association of a tyrosine kinase with the IL-2R complex and that IL-2 can induce proliferation and tyrosine phosphorylation in cell lines which lack the known SRC family kinases expressed by T lymphocytes. Thus members of other kinase families besides SRC may also be involved in mediating IL-2 signal transduction. Biochemical studies and studies of cells expressing mutant IL-2 receptors indicate that IL-2-induced tyrosine kinase activation initiates a complex signaling cascade. The cascade includes SRC family kinase members such as lck, fyn, and lyn, activation of Raf-1 and PI-3K, and ras, and increased expression of the fos, fra-1, and jun protooncogenes. In addition, ligation of the IL-2R leads to rapid increases in myc expression and more delayed increases in the expression of the cdc2 and cdk2 kinases and the cyclins through a tyrosine phosphorylation independent pathway. Whether other biochemical processes initiated by IL-2R ligation, including activation of the MAP2, p70S6 and p90RSK serine threonine kinases, activation of NF-kappa B, and increased expression of Raf-1, Pim-1, bcl-2, IL-2R alpha and IL-2R beta, are consequences of the IL-2-induced tyrosine kinase cascade remains to be determined.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have previously reported that different putative CD4 ligands (anti-CD4 antibody, gp160 from HIV, synthetic peptides analogous to the residues 35-46 of HLA class II beta1 chain and residues 134-148 of HLA class II beta2 chain) down-regulate LFA-1-dependent adhesion between CD4+ T cells and HLA class II+ B cells, and also activate p56lck and the phosphatidylinositol-3 kinase (PI3-kinase) associated with the CD4-p56lck complex. It was demonstrated that the latter activation was dependent on the CD4-p56lck association. Since these results suggest a relationship between p56lck and PI3-kinase, we investigated whether PI3-kinase was tyrosine phosphorylated after CD4 binding and whether this phosphorylation was also dependent on the CD4-p56lck association. We show herein that CD4 binding increased tyrosine phosphorylation of the catalytic subunit p110 of PI3-kinase but not of the p85 subunit. Association between p56lck and PI3-kinase was constitutive, and was not modified after CD4 binding. In contrast, p110 tyrosine phosphorylation was inducible, transient and dependent on the CD4-p56lck association. The role of the tyrosine phosphorylation of p110-PI3-kinase following ligand binding to CD4 is unknown. We speculate that this event could link the activation of p56lck and of PI3-kinase after CD4 binding.  相似文献   

3.
Heterodimeric class IA phosphoinositide 3-kinase (PI 3-kinase) plays a crucial role in a variety of cellular signalling events downstream of a number of cell-surface receptor tyrosine kinases. Activation of the enzyme is effected in part by the binding of two Src homology-2 domains (SH2) of the 85 kDa regulatory subunit to specific phosphotyrosine-containing peptide motifs within activated cytoplasmic receptor domains. The solution structure of the uncomplexed C-terminal SH2 (C-SH2) domain of the p85 alpha subunit of PI 3-kinase has been determined by means of multinuclear, double and triple-resonance NMR experiments and restrained molecular-dynamics simulated-annealing calculations. The solution structure clearly indicates that the uncomplexed C-SH2 domain conforms to the consensus polypeptide fold exhibited by other SH2 domains, with an additional short helical element at the N terminus. In particular, the C-SH2 structure is very similar to both the p85 alpha N-terminal SH2 domain (N-SH2) and the Src SH2 domain with a root mean square difference (rmsd) for 44 C alpha atoms of 1.09 and 0.89 A, respectively. The canonical BC, EF and BG loops are less well-defined by the experimental restraints and show greater variability in the ensemble of C-SH2 conformers. The lower level of definition in these regions may reflect the presence of conformational disorder, an interpretation supported by the absence or broadening of backbone and side-chain NMR resonances for some of these residues. NMR experiments were performed, where C-SH2 was titrated with phosphotyrosine-containing peptides corresponding to p85 alpha recognition sites in the cytoplasmic domain of the platelet-derived growth-factor receptor. The ligand-induced chemical-shift perturbations indicate the amino-acid residues in C-SH2 involved in peptide recognition follow the pattern predicted from homologous complexes. A series of C-SH2 mutants was generated and tested for phosphotyrosine peptide binding by surface plasmon resonance. Mutation of the invariant Arg36 (beta B5) to Met completely abolishes phosphopeptide binding. Mutation of each of Ser38, Ser39 or Lys40 in the BC loop to Ala reduces the affinity of C-SH2 for a cognate phosphopeptide, as does mutation of His93 (BG5) to Asn. These effects are consistent with the involvement of the BC loop and BG loops regions in ligation of phosphopeptide ligands. Mutation of Cys57 (beta D5) in C-SH2 to Ile, the corresponding residue type in the p85 alpha N-SH2 domain, results in a change in peptide binding selectivity of C-SH2 towards that demonstrated by p85 alpha N-SH2. This pattern of p85 alpha phosphopeptide binding specificity is interpreted in terms of a model of the p85 alpha/PDGF-receptor interaction.  相似文献   

4.
Recently c-Cbl has been reported to be phosphorylated upon CSF-1 stimulation. The product of the c-cbl proto-oncogene (c-Cbl) is a 120 kDa protein harboring several docking sites for Src homology 2 (SH2) domain containing proteins and proline-rich regions that have been shown to allow its constitutive association with the SH3 domains of Grb2. We demonstrate here that CSF-1 exposure of stable transfectant CHO cells expressing the CSF-1 receptor induced the sustained tyrosine phosphorylation of c-Cbl and its subsequent association with Crk-II and the p85 kDa subunit of the PI 3-kinase, while it constitutively associates with Grb2. We demonstrate by in vitro experiments that these associations require the SH2 domain of Crk-II and both the C- and N-terminal SH2 domains of the p85 subunit of the PI 3-kinase. cCbl is the major PI 3-kinase-containing protein in c-Fms expressing CHO cells upon CSF-1 stimulation. Thus c-Cbl behaves as a core protein, allowing the formation of a quaternary complex including, Crk-II, PI 3-kinase and Grb2. We provide evidence that this multiprotein complex can interact with the tyrosine phosphorylated CSF-1 receptor through the unoccupied SH2 domain of Grb2.  相似文献   

5.
HLA-specific killer cell inhibitory receptors (KIR) are thought to impede natural killer (NK) and T cell activation programs through recruitment of the SH2 domain-containing tyrosine phosphatases, SHP-1 and SHP-2, to their cytoplasmic tails (CYT). To identify other SH2 domain-containing proteins that bind KIR CYT, we used the recently described yeast two-bait interaction trap and a modified version of this system, both of which permit tyrosine phosphorylation of bait proteins. Using these systems, we show that KIR CYT, once phosphorylated by the src-family tyrosine kinase LCK, additionally bind the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase. Furthermore, we show that in an NK cell line, NK3.3, cross-linking of KIR results in recruitment of p85alpha to KIR and activation of PI 3-kinase lipid kinase activity. One consequence of KIR coupling to PI 3-kinase is downstream activation of the antiapoptotic protein kinase AKT. Therefore, in addition to providing negative signals, KIR may also contribute positive signals for NK and T cell growth and/or survival.  相似文献   

6.
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by association with a variety of tyrosine kinase receptors and intracellular tyrosine-phosphorylated substrates. We isolated a cDNA that encodes a 50-kDa regulatory subunit of PI 3-kinase with an expression cloning method using 32P-labeled insulin receptor substrate-1 (IRS-1). This 50-kDa protein contains two SH2 domains and an inter-SH2 domain of p85alpha, but the SH3 and bcr homology domains of p85alpha were replaced by a unique 6-amino acid sequence. Thus, this protein appears to be generated by alternative splicing of the p85alpha gene product. We suggest that this protein be called p50alpha. Northern blotting using a specific DNA probe corresponding to p50alpha revealed 6.0- and 2.8-kb bands in hepatic, brain, and renal tissues. The expression of p50alpha protein and its associated PI 3-kinase were detected in lysates prepared from the liver, brain, and muscle using a specific antibody against p50alpha. Taken together, these observations indicate that the p85alpha gene actually generates three protein products of 85, 55, and 50 kDa. The distributions of the three proteins (p85alpha, p55alpha, and p50alpha), in various rat tissues and also in various brain compartments, were found to be different. Interestingly, p50alpha forms a heterodimer with p110 that can as well as cannot be labeled with wortmannin, whereas p85alpha and p55alpha associate only with p110 that can be wortmannin-labeled. Furthermore, p50alpha exhibits a markedly higher capacity for activation of associated PI 3-kinase via insulin stimulation and has a higher affinity for tyrosine-phosphorylated IRS-1 than the other isoforms. Considering the high level of p50alpha expression in the liver and its marked responsiveness to insulin, p50alpha appears to play an important role in the activation of hepatic PI 3-kinase. Each of the three alpha isoforms has a different function and may have specific roles in various tissues.  相似文献   

7.
8.
Interleukin (IL)-2, a major growth and differentiation factor for T lymphocytes, was found to induce tyrosine phosphorylation of the proto-oncogene products p120-Cbl and CrkL in IL-2-dependent cell lines. We established that, in unstimulated lymphocytes, the Src homology 2 (SH2) and SH3 domain-containing protein Grb2 and the p85 subunit of phosphatidylinositol 3-kinase, associate constitutively with Cbl via their SH3 domains. Furthermore, IL-2 stimulation increased the level of interaction of phosphorylated Cbl with the p85 SH2 domains, and we provide evidence that the preformed Cbl-Grb2 complex recruits the phosphorylated p52 Shc adaptor protein. In addition, we demonstrate that the SH2-SH3-SH3 adaptor protein CrkL is tyrosine-phosphorylated in an IL-2-dependent manner and, via its SH2 domain, associates with a large proportion of phosphorylated Cbl. We also show that p85 is preassociated with the CrkL SH3 domain. Furthermore, the association of CrkL and p85 is increased after IL-2 treatment by a mechanism involving intermediary tyrosine-phosphorylated proteins that remain to be identified. Our results show that CrkL associates independently with Cbl or p85 and suggest that it also participates in larger complexes containing Cbl and p85. Although the precise roles of Cbl and CrkL remain to be elucidated, their tyrosine phosphorylation, in addition to the multiple protein interactions described here, strongly suggest that Cbl and CrkL may play pivotal roles in the early steps of IL-2 signal transduction.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI 3-K) is implicated in cellular events including glucose transport, glycogen synthesis, and protein synthesis. It is activated in insulin-stimulated cells by binding of the Src homology 2 (SH2) domains in its 85-kDa regulatory subunit to insulin receptor substrate-1 (IRS-1), and, others. We have previously shown that IRS-1-associated PI 3-kinase activity is not essential for insulin-stimulated glucose transport in 3T3-L1 adipocytes, and that alternate pathways exist in these cells. We now show that adenovirus-mediated overexpression of the p85N-SH2 domain in these cells behaves in a dominant-negative manner, interfering with complex formation between endogenous PI 3-K and its SH2 binding targets. This not only inhibited insulin-stimulated IRS-1-associated PI 3-kinase activity, but also completely blocked anti-phosphotyrosine-associated PI 3-kinase activity, which would include the non-IRS-1-associated activity. This resulted in inhibition of insulin-stimulated glucose transport, glycogen synthase activity and DNA synthesis. Further, Ser/Thr phosphorylation of downstream molecules Akt and p70 S6 kinase was inhibited. However, co-expression of a membrane-targeted p110(C) with the p85N-SH2 protein rescued glucose transport, supporting our argument that the p85N-SH2 protein specifically blocks insulin-mediated PI 3-kinase activity, and, that the signaling pathways downstream of PI 3-kinase are intact. Unexpectedly, GTP-bound Ras was elevated in the basal state. Since p85 is known to interact with GTPase-activating protein in 3T3-L1 adipocytes, the overexpressed p85N-SH2 peptide could titrate out cellular GTPase-activating protein by direct association, such that it is unavailable to hydrolyze GTP-bound Ras. However, insulin-induced mitogen-activated protein kinase phosphorylation was inhibited. Thus, PI 3-kinase may be required for this action at a step independent of and downstream of Ras. We conclude that, in 3T3-L1 adipocytes, non-IRS-1-associated PI 3-kinase activity is crucial for insulin's metabolic signaling, and that overexpressed p85N-SH2 protein inhibits a variety of insulin's ultimate biological effects.  相似文献   

10.
Purified amino-terminal Src homology 2 (SH2) domains of GAP, PLCgamma1 and the p85alpha subunit of PI 3-kinase, as well as the carboxy-terminal SH2 domain of the latter protein and the unique SH2 domain of Grb2, were injected into full grown, stage VI Xenopus laevis oocytes. None of the injected domains showed any effect when injected alone, nor did they affect the rate of GVBD induced by progesterone, an adenylate cyclase-dependent process. On the other hand, the unique Grb2 SH2 domain and all N-terminal SH2 domains injected inhibited to various degrees the rate of insulin-induced GVBD, a tyrosine kinase dependent pathway. Interestingly, and in contrast to the behavior shown by the N-terminal domain of the same molecule, the C-terminal SH2 domain of p85 did not inhibit, but slightly accelerated the rate of GVBD induced by insulin. Furthermore, whereas the Grb SH2 domain and all N-terminal SH2 domains tested failed to co-operate with normal Ras protein to induce GVBD, the C-terminal SH2 domain of p85alpha exhibited significant synergy when coinjected with normal Ras protein, indicating that the C- and N-terminal SH2 domains of p85alpha exert opposite (positive and negative, respectively) regulatory roles in the control of oocyte insulin/Ras signaling pathways. Our results demonstrate that the purified, isolated SH2 domains retain structural and functional specificity and that Xenopus oocytes constitute an useful biological system to analyse their functional role in tyrosine kinase signaling pathways.  相似文献   

11.
The insulin receptor, as a consequence of ligand binding, undergoes autophosphorylation of critical tyrosyl residues within the cytoplasmic portion of its beta-subunit. The 85 kDa regulatory subunit of phosphatidylinositol (PI) 3-kinase (p85), an SH2 domain protein, has been implicated as a regulatory molecule in the insulin signal transduction pathway. For the present study, glutathione S-transferase (GST) fusion proteins of p85 SH2 domains were used to determine if such motifs associate directly with the autophosphorylated human insulin receptor. The p85 N + C (amino plus carboxyl) SH2 domains were demonstrated to associate with the autophosphorylated beta-subunit, while neither the GTPase activator protein (GAP) N SH2 domain nor the phospholipase C-gamma 1 (PLC gamma 1) N + C SH2 domains exhibited measurable affinity for the activated receptor. The p85 N SH2 domain demonstrated weak association with the insulin receptor, while the p85 C SH2 domain alone formed no detectable complexes with the insulin receptor. The association of p85 N + C SH2 domains with the autophosphorylated receptor was competed efficiently by a 15-residue tyrosine-phosphorylated peptide corresponding to the carboxyl-terminal region of the insulin receptor, but not by phosphopeptides of similar length derived from the juxtamembrane or regulatory regions. The insulin receptor C domain phosphopeptide inhibited the p85 N + C SH2 domain-insulin receptor complex with an IC0.5 of 2.3 +/- 0.35 microM, whereas a 10-residue phosphopeptide derived from the insulin receptor substrate 1 (IRS-1) competed with an IC0.5 of 0.54 +/- 0.10 microM. These results demonstrate that, in vitro, there is an association between the p85 regulatory protein and the carboxyl-terminal region of the activated insulin receptor that requires the presence of both the N and C SH2 domains. Furthermore, formation of the p85/insulin receptor complex may lead to signaling pathways independent of IRS-1.  相似文献   

12.
13.
Mammalian phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in the regulation of various cellular, receptor tyrosine kinase-mediated processes, such as mitogenesis and transformation. PI 3-kinase is composed of a 110-kDa catalytic subunit and a regulatory subunit of 85 kDa or 55 kDa. We have cloned a gene for a regulatory subunit from Drosophila melanogaster, named droPIK57, from head-specific cDNA libraries. The droPIK57 gene encodes a protein containing two SH2 domains with significant sequence homology to those in p85 and p55. Like the p55 subunits, DroPIK57 is missing the SH3 domain and the bcr homology region of the p85 subunit. The short N-terminus as well as the C-terminus of the DroPIK57 protein show no identity to the known PI 3-kinase subunits, suggesting that it is a new member in the family of regulatory subunits. In-situ hybridization and Northern blot analysis indicate a widespread function of this gene during embryogenesis and in the CNS.  相似文献   

14.
The focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To gain insight into FAK function, we examined the potential interaction of FAK with intracellular signaling molecules containing the Src homology 2 domains. We report here the stable association of FAK with phosphatidylinositol 3-kinase (PI3-kinase; EC 2.7.1.137) in NIH 3T3 mouse fibroblasts. This interaction was stimulated by cell adhesion concomitant with FAK activation. We also found that recombinant FAK bound to the p85 subunit of PI 3-kinase directly in vitro and that autophosphorylation of recombinant FAK in vitro increased its binding to PI 3-kinase. We detected increased tyrosine phosphorylation of the p85 subunit of PI 3-kinase during cell adhesion and observed direct phosphorylation of p85 by FAK in vitro. Together, these results suggest that PI 3-kinase may be a FAK substrate in vivo and serve as an effector of FAK.  相似文献   

15.
In human T-lymphocytes the Src family protein tyrosine kinase p59(fyn) associates with three phosphoproteins of 43, 55, and 85 kDa (pp43, pp55, and pp85). Employing a GST-Fyn-Src homology 2 (SH2) domain fusion protein pp55 was purified from lysates of Jurkat T-cells. Molecular cloning of the pp55 cDNA reveals that the pp55 gene codes for a so far nondescribed polypeptide of 359 amino acids that comprises a pleckstrin homology domain, a C-terminal SH3 domain, as well as several potential tyrosine phosphorylation sites, among which one fulfills the criteria to bind Src-like SH2 domains with high affinity. Consistent with this observation, pp55 selectively binds to isolated SH2 domains of Lck, Lyn, Src, and Fyn but not to the SH2 domains of ZAP70, Syk, Shc, SLP-76, Grb2, phosphatidylinositol 3-kinase, and c-abl in vitro. Based on these properties the protein was termed SKAP55 (src kinase-associated phosphoprotein of 55 kDa). Northern blot analysis shows that SKAP55 mRNA is preferentially expressed in lymphatic tissues. SKAP55 is detected in resting human T-lymphocytes as a constitutively tyrosine phosphorylated protein that selectively interacts with p59(fyn). These data suggest that SKAP55 represents a novel adaptor protein likely involved in Fyn-mediated signaling in human T-lymphocytes.  相似文献   

16.
The interaction of the Fyn SH3 domain with the p85 subunit of PI3-kinase is investigated using structural detail and thermodynamic data. The solution structure complex of the SH3 domain with a proline-rich peptide mimic of the binding site on the p85 subunit is described. This indicates that the peptide binds as a poly(L-proline) type II helix. Circular dichroism spectroscopic studies reveal that in the unbound state the peptide exhibits no structure. Thermodynamic data for the binding of this peptide to the SH3 domain suggest that the weak binding (approximately 31 microM) of this interaction is, in part, due to the entropically unfavorable effect of helix formation (delta S0 = -78 J.mol-1.K-1). Binding of the SH3 domain to the intact p85 subunit (minus its own SH3 domain) is tighter, and the entropic and enthalpic contributions are very different from those given by the peptide interaction (delta S0 = +252 J.mol-1.K-1; delta H0 = +44 kJ.mol-1). From these dramatically different thermodynamic measurements we are able to conclude that the interaction of the proline-rich peptide does not effectively mimic the interaction of the intact p85 subunit with the SH3 domain and suggest that other interactions could be important.  相似文献   

17.
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.  相似文献   

18.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

19.
Our previous studies on the p85/p110alpha phosphatidylinositol 3-kinase showed that the p85 regulatory subunit inhibits the p110alpha catalytic subunit, and that phosphopeptide activation of p85/p110alpha dimers reflects a disinhibition of p110alpha (Yu, J., Zhang, Y., McIlroy, J., Rordorf-Nikolic, T., Orr, G. A., and Backer, J. M. (1998) Mol. Cell. Biol. 18, 1379-1387). We now define the domains of p85 required for inhibition of p110alpha. The iSH2 domain of p85 is sufficient to bind p110alpha but does not inhibit it. Inhibition of p110alpha requires the presence of the nSH2 domain linked to the iSH2 domain. Phosphopeptides increase the activity of nSH2/iSH2-p110alpha dimers, demonstrating that the nSH2 domain mediates both inhibition of p110alpha and disinhibition by phosphopeptides. In contrast, phosphopeptides did not increase the activity of iSH2/cSH2-p110alpha dimers, or dimers composed of p110alpha and an nSH2/iSH2/cSH2 construct containing a mutant nSH2 domain. Phosphopeptide binding to the cSH2 domain increased p110alpha activity only in the context of an intact p85 containing both the nSH2 domain and residues 1-322 (the SH3, proline-rich and breakpoint cluster region-homolgy domains). These data suggest that the nSH2 domain of p85 is a direct regulator of p110alpha activity. Regulation of p110alpha by phosphopeptide binding to the cSH2 domain occurs by a mechanism that requires the additional presence of the nSH2 domain and residues 1-322 of p85.  相似文献   

20.
Protein tyrosine kinase p59fyn is associated with the TCR-CD3 complex and is suggested to play a role in T cell activation. To determine the molecular mechanism of p59fyn-mediated signal transduction in T cell activation, we established murine T cell hybridoma lines that expressed an elevated amount of wild-type or mutant fyns. Clones that expressed high levels of normal p59fyn and active p59fyn, encoded by wild-type and f-14 mutant fyn respectively, showed enhanced IL-2 production upon stimulation by anti-CD3 antibodies or natural antigen. On the other hand, clones that expressed kinase negative p59fyn and p59fyn with an SH2 (Src-homology 2) deletion encoded by t-1 mutant fyn showed little induction of IL-2 production upon stimulation. These data suggest that p59fyn is important in T cell signaling and that the SH2 sequence plays a critical role in the reaction. Induction of tyrosine phosphorylation of multiple proteins upon antigenic stimulation was augmented similarly in the cells that respectively expressed wild-type and f-14 mutant fyns at elevated levels. The proteins that became highly tyrosine-phosphorylated included phospholipase C (PLC-gamma 1), p95vav, ZAP-70, the MAP kinase, CD3 zeta and unidentified proteins of 120, 100 and 80 kDa. Tyrosine phosphorylation of the 120, 95 and 68 kDa proteins associated with PLC-gamma 1 was also observed in these cells upon stimulation. In contrast, only the 100 kDa protein and the MAP kinase were increasingly tyrosine phosphorylated in the antigen-stimulated cells expressing t-1 fyn. These data suggest that PLC-gamma 1, PLC-gamma 1 associated molecules, p95vav, the 80 kDa protein, ZAP-70 and the CD3 zeta chain may be substrates of p59fyn or of other tyrosine kinases regulated by p59fyn and be important in T cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号