共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
硫酸烧渣综合利用磨矿分级试验研究 总被引:4,自引:0,他引:4
对硫酸烧渣进行了矿物成分考察 ,根据试样工艺矿物学研究的结果 ,重点研究了硫酸烧渣分级磨矿试验。由于试验的主要目的是生产重介质 ,而重介质所要求的粒度较细 ,一段磨矿很难达到这一要求 ,应采用二段磨矿 ,最后采用磁选—重选—磁选的选别工艺可以选出合格的重介质。 相似文献
4.
采用选择性脱铜—氰化提取金银的湿法处理工艺综合回收含金银硫酸烧渣中的有价金属。重点介绍该工艺中选择性脱铜试验研究。确定的最佳选择性脱铜条件为:加酸量60 kg/t烧渣,磨矿粒度-0.045 mm占80%,浸出温度80℃,浸出时间2 h,矿浆浓度40%;在该条件下,铜、锌浸出率分别为84.36%和62.28%,铁浸出率仅为2.79%,金、银等不被浸出,取得了较好的选择性脱铜效果;脱铜渣氰化金、银浸出率分别为85.61%和69.91%,得到的铁精矿含铁64.16%,其它杂质金属含量较低,实现了烧渣中有价金属的综合利用。本研究有效解决了传统硫酸烧渣氰化提取金、银存在的浸出率低,得到的铁精矿杂质金属含量高等问题。 相似文献
5.
硫酸烧渣中铁的综合利用研究进展 总被引:1,自引:0,他引:1
综述了硫酸烧渣中铁的综合利用途径及最新研究进展。重点对硫酸烧渣中铁的各种提取方法的适用条件、存在问题进行了分析和对比,指出直接活化酸溶法具有工艺简单、节能环保等优点,工业化应用前景良好。 相似文献
6.
通过X射线衍射、扫描电镜、电子探针、电子能谱及化学多元素分析对安徽某地硫酸烧渣进行了工艺矿物学研究,并探讨了工艺矿物学性质与选矿工艺的关系。 相似文献
7.
黄铁矿烧渣综合利用的研究 总被引:9,自引:0,他引:9
黄铁矿烧渣含铁品位高,是可利用的铁矿原料。用常规选矿方法处理烧渣,指标不理想。化学选矿处理烧渣是一种新颖、有效的方法,所得指标先进,且工艺简单,成本低,实践中容易实现。 相似文献
8.
化学选矿用于处理黄铁矿烧渣 总被引:7,自引:0,他引:7
介绍了一种处理黄铁矿烧渣的新方法--化学选矿法。该方法的突出特点是既除去了硫酸渣中的残余硫,又富集了铁。且工艺简单,成本低,配合磁选工艺,用于处理含铁56.85%,含硫0.96%的烧渣时,可获得铁精矿品位61.04%,含硫0.43%,铁回收率95.87%的良好指标。 相似文献
9.
10.
硫铁矿烧渣综合利用试验研究 总被引:1,自引:0,他引:1
针对西北某硫铁矿烧渣的具体情况,试验研究了影响硫铁矿烧渣磁化焙烧-磁选的主要因素。结果表明:采用挥发份较高的新疆哈密烟煤,当焙烧温度为700℃、焙烧时间为30m in、煤粉配比为6%时,可获得铁精矿品位为63.08%、回收率为75.78%的技术指标,试验取得了较为满意的结果。 相似文献
11.
12.
13.
鞍钢脱硫扒渣的综合回收利用研究 总被引:1,自引:0,他引:1
为实现脱硫扒渣资源的有效利用, 利用化学分析、光学显微镜、XRD、SEM等分析和检测手段研究了鞍钢一炼钢厂铁水预处理脱硫扒渣的组成特性, 并根据其组成特性制定了相应的提铁降硫选别流程。试验结果表明, 采用磨矿分级-重选-磁选联合流程可以得到较好的选别指标, 将原渣样磨至-0.074 mm粒级占54.20%, +0.3 mm粒级直接作为铁精矿进行回收, 对-0.3 mm粒级先重选、重选精矿再磨后采用磁选分离, 得到的铁精矿TFe品位为86.32%、回收率为78.48%、S品位为0.21%。 相似文献
14.
15.
废渣矿物组成较为复杂,并有较多玻璃质、微晶质和不同矿物的过渡相存在。废渣中锌主要分布在硅酸盐和锌铁尖晶石中;铅含量低,主要以铅矾形式存在;铁的主要物相为赤褐铁矿和硅酸铁;废渣含碳量高,烧失量较大。根据废渣含锌量及浸出毒性结果,将废渣分为两类处理。锌含量低且浸出毒性在国标规定范围的这一类废渣,金属回收价值不高,可作为建筑材料的原料(如水泥、混凝土及烧结砖)。另一类锌含量较高或浸出毒性超出国标规定范围的废渣,进行还原焙烧回收有价金属,90%以上的Zn和85%以上的Pb挥发进入烟尘,得到锌铅含量低且浸出毒性在国标规定范围的残渣,可用于建筑材料。 相似文献
16.
17.
18.
19.
我国钒钛磁铁矿经高炉法冶炼后钛资源基本都富集在渣相中,结构复杂,无法进一步回收利用,造成钛资源无法有效利用和环境污染等问题。归纳了国内外含钛高炉渣综合利用方面的研究成果,从整体利用和提钛2方面分别讨论了目前已开发的利用方法所存在的问题。整体利用含钛高炉渣(如制作建筑材料、特种功能材料等)法虽然能解决堆积产生的环境问题,但经济附加值低,且大量的钛资源被浪费,对钛资源的利用率低。在含钛高炉渣提钛利用方法中,直接酸解法或者碱法处理制备的产品品质低,经济性差,还会带来二次污染;含钛高炉渣制备含钛合金的方法成本高、产品应用范围窄;选择性富集分选法提钛时含钛矿物的转变不彻底,并且能耗高、添加剂消耗量大,钛的回收率不高;高温碳化—低温氯化工艺中高温碳化过程可以利用液态炉渣的物理热,大幅降低了碳化工序的能耗,低温氯化过程可在400~550℃实现Ti C的选择性氯化,避免了钙镁等杂质的影响,且氯化产物杂质含量低,钛回收率高,产品价值高、市场大。在此基础上,指出高温碳化—低温氯化处理含钛高炉渣具备工业化应用前景,值得进一步开展研究。 相似文献