首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

2.
The present study explores the possibilities of catalysts of Ag/Al2O3, in which silver has been deposited using reverse microemulsions with the aim of getting maximum dispersion and homogeneity in the active superficial species, for the selective catalytic reduction of NOx in excess of oxygen, using both propene and ethanol as reductants and in the scope of the control of the emissions produced by vehicles that operate in conditions of lean mixture like the diesel engine or those of gasoline direct injection. The promotional effect of the hydrogen presence in the reactive mixture has also been analyzed. For both reductants, when in presence of hydrogen, an important enhancement in NOx conversion is produced, in particular for a catalyst with 3 wt.% silver. The production of acetaldehyde during the reaction employing ethanol is also analyzed and its role on the NOx reduction process has been examined. The interpretation of catalytic properties has been complemented by means of in-situ DRIFTS.  相似文献   

3.
Three model catalysts (Pt/Al2O3, Pt/TiO2, Pt/V2O5/TiO2) were examined in regard to their NO2 formation ability under a changing lean gas composition. The results show that the NO to NO2 oxidation function as well as the NO x reduction under lean gas conditions is affected by a change in the lean gas atmosphere. The NO oxidation activity also decreased with time, for Pt/Al2O3 and Pt/TiO2, and a possible explanation may be platinum oxide formation. This deactivation was not observed for Pt/V2O5/TiO2.  相似文献   

4.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

5.
TiO2-Al2O3 binary oxide supports were obtained by sol–gel methods from Tetra-n-butyl-titanate and pseudoboehmite/aluminium chloride resources. The typical physico-chemical properties of NiW/TiO2-Al2O3 catalysts with different TiO2 loadings and their supports were characterized by means of BET, XRD and UV–vis DRS, etc. The BET results indicated that the specific surface areas of NiW/TiO2-Al2O3 catalysts were as higher as that over pure γ-Al2O3 support, and the pore diameters were also large. The XRD and UV–vis DRS analyzing results showed that the Ti-containing supported catalysts existed as anatase TiO2 species and the incorporation of TiO2 could adjust the interaction between support and active metal, and impelled the higher reducibility of tungsten. The hydrodesulphurization (HDS) performance of the series catalysts were evaluated with diesel feedstock in a micro-reactor unit, and the HDS results showed that NiW/TiO2-Al2O3 catalysts exhibited higher activities of ultra deep hydrodesulphurization of diesel oil than that of NiW/Al2O3 catalyst. The optimal TiO2 content of NiW/TiO2-Al2O3 catalysts was about 15 m%, and the corresponding HDS efficiency could reach to 100%. The sulphur contents of diesel products over NiW/TiO2-Al2O3 (from pseudoboehmite/AlCl3) catalysts with suitable TiO2 content could be less than 15 ppmw, which met the sulphur regulation of Euro IV specification of ultra clean diesel fuel.  相似文献   

6.
This paper describes the selective oxidation of ammonia into nitrogen over copper, silver and gold catalysts between room temperature and 400 °C using different NH3/O2 ratios. The effect of addition of CeOx and Li2O on the activity and selectivity is also discussed. The results show that copper and silver are very active and selective toward N2. However the multicomponent catalysts: M/Li2O/CeOx/Al2O3 (M: Au, Ag, Cu) perform the best. On all three metal containing catalysts the activity and selectivity is influenced by the particle size and the interaction between metal particles and support.  相似文献   

7.
Effect of cobalt and rhodium promoter on NOx storage and reduction (NSR) kinetics was investigated over Pt/BaO/Al2O3. Kinetics of 2% cobalt loading over Pt/BaO/Al2O3 demonstrated highest NOx uptake during lean cycle, while reduction efficiency during rich cycle appeared most poor. In contrast to this, rhodium showed suppressing effect of NOx uptake during lean cycle and demonstrated an enhanced effect for the higher efficiency of NOx reduction during rich cycle. DRIFT study for NOx uptake and regeneration confirmed formation of surface BaNOx from the band at 1300 cm−1 and formation of bulk BaNOx from the band at 1330 cm−1.  相似文献   

8.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

9.
Titania-modified silicas with different weight% of TiO2 were prepared by sol–gel method and used as supports for Pd (1 wt%) catalysts. The obtained materials were tested in the oxidation of methane under lean conditions in absence and in presence of SO2. Test reactions were consecutively performed in order to evaluate the thermal stability and poisoning reversibility. Increasing amounts of TiO2 improved the catalytic activity, with an optimum of the performance for 10 wt% TiO2 loading. Moreover, the titania-containing catalysts exhibited a superior tolerance towards SO2 by either adding it to the reactants or feeding it as a pure pretreatment atmosphere at 350 °C. Catalysts were characterized by XPS, XRD, FT-IR and BET measurements. According to the structural and surface analyses, the mixed oxides contained Si–O–Ti linkages which were interpreted as being responsible for the enhanced intrinsic activity of supported PdO with respect to PdO on either pure SiO2 or pure TiO2. Moreover, the preferential interaction of the sulfur molecule with TiO2 and the easy SOx desorption from high surface area silica were the determining factors for the superior SO2 tolerance of the TiO2-doped catalysts.  相似文献   

10.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

11.
12.
A series of cerium modified MnOx/TiO2 catalysts were prepared by sol–gel method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The experimental results showed that NO conversion could be improved by doping Ce from 39% to 84% at 80 °C with a gas hourly space velocity (GHSV) of 40,000 h−1. This activity improvement may be contributed to the increase of chemisorbed oxygen and acidity after Ce doping. TPR results also verified that the redox property of Ce modified MnOx/TiO2 was enhanced at low-temperature.  相似文献   

13.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

14.
Surface modification and characterization of TiO2 nanoparticles as an additive in a polyacrylic clear coating were investigated. For the improvement of nanoparticles dispersion and the decreasing of photocatalytic activity, the surface of nanoparticles was modified with binary SiO2/Al2O3. The surface treatment of TiO2 nanoparticles was characterized with FTIR. Microstructural analysis was done by AFM. The size, particle size distribution and zeta potential of TiO2 nanoparticles in water dispersion was measured by DLS method. For the evaluation of particle size and the stability of nanoparticles in water dispersions with higher solid content the electroacoustic spectroscopy was made. To determine the applicability and evaluate the transmittance of the nano-TiO2 composite coatings UV–VIS spectroscopy in the wavelength range of 200–800 nm was employed. The results showed that surface treatment of TiO2 nanoparticles with SiO2/Al2O3 improves nanoparticles dispersion and UV protection of the clear polyacrylic composite coating.  相似文献   

15.
The effect of coexisting SO2 on the catalytic activity of Ga2O3–Al2O3 prepared by impregnation, coprecipitation and sol–gel method for NO reduction by propene in the presence of oxygen was studied. Although the activity of Al2O3 and Ga2O3–Al2O3 prepared by impregnation (Ga2O3/Al2O3(I)) and coprecipitation (Ga2O3–Al2O3(CP)) was depressed considerably by the presence of SO2, NO conversion on Ga2O3–Al2O3 prepared by sol–gel method (Ga2O3–Al2O3(S)) was not decreased but increased slightly by SO2 at temperatures below 723 K. From catalyst characterization, SO2 treatment was found to cause two important effects on the surface properties: one is the creation of Brønsted acid sites on which propene activation is promoted (positive effect), and the other is the poisoning of NOx adsorption sites on which NO reduction proceeds (negative effect). It was presumed that the influence of SO2 treatment on the catalytic activity is strongly related to the balance between the negative and positive. The activity enhancement of Ga2O3–Al2O3(S) by SO2 was accounted for by the following consideration: (1) increase of the propene activation ability by SO2, (2) incomplete inhibition of NOx adsorption sites by SO2.  相似文献   

16.
The role of the Al2O3 support on the activity of supported Ag catalyst towards the selective catalytic reduction (SCR) of NO with decane is elucidated. A series of Ag/Al2O3 catalysts were prepared by impregnation method and characterized by N2 pore size distribution, XRD, UV–Vis, in-situ FT-IR and acidity measurement by NH3 and pyridine adsorption. The catalytic activity differences of Ag/Al2O3 are correlated with different properties of Al2O3 supports and the active Ag species formed. 4wt% Ag supported on sol-gel prepared Al2O3 (Ag/Al2O3 (SG), showed higher NO x conversion (65% at 400 °C), compared with the respective catalysts made from commercial Al2O3 (Ag/Al2O3 (GB), Ag/Al2O3 (ALO), (∼26 and 7% at 400 °C). The higher surface area, acidity and pore size distribution in sol–gel prepared Al2O3 (SG) results in higher NO and hydrocarbon conversion. Based on the UV–vis characterization, the activity of NO reduction is correlated to the presence of Agnδ+ clusters and acidity of Al2O3 support was found to be one of the important parameter in promoting the formation and stabilization of Agnδ+ clusters. Furthermore from pyridine adsorption results, presence of more number of Bronsted acid sites in Ag/Al2O3 (SG) is confirmed, which could also contribute to low temperature hydrocarbon activation and improve NO conversion. In situ FT-IR measurements revealed the higher rate of –CN and –NCO intermediate species formation over 4wt% Ag/Al2O3 (SG). We conclude that the physico–chemical properties of Al2O3 play a crucial role in NO x conversion over Ag/Al2O3 catalysts. Thus, the activity of the Ag/Al2O3 catalyst can be tailored by using a proper type of Al2O3 support.  相似文献   

17.
In this work, we investigated the NOx storage behavior of Pt/BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt/BaO/CeO2 sample demonstrated slightly higher NOx uptake in the entire temperature range studied compared with Pt/BaO/γ-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to 3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600 °C on the ceria-based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly formed BaS phase into large crystallites. XPS results revealed the presence of about five times more residual sulfur after reductive de-sulfation at 600 °C on the alumina-based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria-based catalysts have (a) much higher sulfur tolerance and (b) excellent resistance against Pt sintering when they are compared to the widely used alumina-based catalysts.  相似文献   

18.
FTIR and pulse thermal analysis were applied to investigate catalysts containing Pt (1 wt%)/Ba (17 wt%) supported on -Al2O3, SiO2 and ZrO2. The aim was to learn how the support material affects the thermal stability of barium carbonate and its activity in the reaction to bulk Ba(NO3)2. The lower thermal stability of BaCO3 in alumina supported samples was found to influence the formation of barium nitrate during the NO x storage process. Quantification of Ba(NO3)2 formed during NO x storage indicated that for alumina supported catalysts only ca. 30% of barium present in the sample is involved in the storage process. The low thermal stability found for alumina supported barium nitrite excludes its role in the formation of barium nitrate during interaction of NO x with the catalyst at 300 °C. The studies indicate that -Al2O3 plays a major role in influencing the thermal stability of BaCO3 and Ba(NO3)2. This finding seems to be relevant for the higher activity of -Al2O3-supported catalysts in NO x storage reduction reactions.  相似文献   

19.
Cu/Al2O3 catalysts with metal loading from 0.64 to 8.8 wt.% have been prepared and characterized by different techniques: N2 adsorption at −196 °C (BET surface area), ICP (Cu loading), XRD, selective copper surface oxidation with N2O (Cu dispersion), TPR-H2 (redox properties), and XPS (copper surface species). The catalytic activity for soot oxidation has been tested both in air and NOx/O2. The activity in air depends on the amount of easily-reduced Cu(II) species, which are reduced around 275 °C under TPR-H2 conditions. The amount of the most active Cu(II) species increases with the copper loading from Cu_1% to Cu_5% and remains almost constant for higher copper loading. In the presence of NOx, the first step of the mechanism is NO oxidation to NO2, and the catalytic activity for this reaction depends on the copper loading. For catalysts with copper loading between Cu_1% and Cu_5%, the catalytic activity for soot oxidation in the presence of NOx depends on NO2 formation. For catalysts with higher copper loading this trend is not followed because of the low reactivity of model soot at the temperature of maximum NO2 production. Regardless the copper loading, all the catalysts improve the selectivity towards CO2 formation as soot oxidation product both under air and NOx/O2.  相似文献   

20.
In situ and time-resolved DRIFT methods were used to monitor the change in NO x adspecies on Pt(1%)–TiO2 and Rh(1%)–TiO2 catalysts during interaction with propene with the aim to determine whether or not propene chemisorption and interaction with the catalyst induces a change in the nature of the NO x adspecies prior to their reduction. The nature of NO x adspecies produced by interaction of the NO + O2/He feed with the catalyst is different on Pt- and Rh–TiO2 (in the Pt–TiO2 catalyst the IR more intense adspecies are nitrate, while in the Rh–TiO2 catalyst nitrosyl species are the IR more intense), but modification of the nature of the adspecies prior to their conversion is observed in both cases. The interpretation of the data provides indication about the nature of the reactive NO x species and the presence of multiple pathways in the mechanism of their conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号