首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
1. We examined the effect of chronic (21 days) oral treatment with the thiazolidinedione, MCC-555 ((+)-5-[[6-(2-fluorbenzyl)-oxy-2-naphy]methyl]-2,4-thiazo lid inedione) on metabolic status and insulin sensitivity in obese (fa/fa) Zucker rats and Zucker Diabetic Fatty (ZDF) rats which display an impaired glucose tolerance (IGT) or overt diabetic symptoms, respectively. 2. MCC-555 treatment to obese Zucker rats (10 and 30 mg kg(-1)) and diabetic ZDF rats (10 mg kg(-1)) reduced non-esterified fatty acid concentrations in both rat strains and reduced plasma glucose and triglyceride concentrations in the obese Zucker rats. Liver glycogen concentrations were significantly increased by chronic MCC-555 treatment in both obese Zucker rats (30 mg kg(-1) day(-1)) and diabetic ZDF rats (10 mg kg(-1) day(-1)), as compared with vehicle-treated lean and obese rats and there was a significant increase in hepatic glycogen synthase activity in MCC-555-treated diabetic ZDF rats as compared to vehicle-treated controls. 3. During a euglycaemic hyperinsulinaemic clamp, MCC-555-treated obese Zucker rats and diabetic ZDF rats required significantly higher glucose infusion rates to maintain stable glucose concentrations (2.01+/-0.19 mg min(-1) and 6.42+/-1.03 mg min(-1), respectively) than vehicle-treated obese controls (0.71+/-0.17 mg min(-1) and 2.09+/-0.71 mg min(-1); P<0.05), demonstrating improved insulin sensitivity in both Zucker and ZDF rats. MCC-555 treatment also enhanced insulin-induced suppression of hepatic glucose production in ZDF rats as measured using infusions of [6-3H]-glucose under clamp conditions. 4. In conclusion, we have demonstrated that MCC-555 improves metabolic status and insulin sensitivity in obese Zucker and diabetic ZDF rats. MCC-555 may prove a useful compound for alleviating the metabolic disturbances and IGT associated with insulin resistance in man.  相似文献   

2.
3.
This study was designed to investigate the effect of glucogon-like peptide-1 (GLP-1) on pancreatic beta-cell function in normal, Zucker diabetic fatty (ZDF) rats, a model for non-insulin-dependent diabetes mellitus (NIDDM or type II diabetes) and their heterozygous siblings. Pancreas perfusion and enzyme-linked immunosorbent assay (ELISA) were used to detect the changes in insulin release under fasting and hyperglycemic conditions and following stimulation with GLP-1. Animals from the ZDF/Gmi-fa rats (ZDF) were grouped according to age, sex, and phenotype (obese or lean), and compared with LA lean rats. Glucose stimulation (10 mmol/L) in obese rats showed repressed response in insulin release. Glucose plus GLP-1 stimulation caused increased insulin release in all groups. The degree of this response differed between groups: lean > obese; young > adult; female > male. The LA lean control group was most sensitive, while the ZDF overtly diabetic group had the lowest response. In addition, the pulsatile pattern of insulin secretion was suppressed in ZDF rats, especially in obese groups. These results support the hypothesis that GLP-1 can effectively stimulate insulin secretion. Insulin release was defective in ZDF obese rats and could be partially restored with GLP-1. ZDF lean rats also showed suppression of beta-cell function and there was a difference in beta-cell function related to sex in ZDF strain. This study documents the efficacy of GLP-1 to stimulate insulin release and contributes to our understanding of the pathophysiological mechanisms underlying NIDDM.  相似文献   

4.
To analyse the relationship between age, glucose tolerance, beta-cell function, and insulin sensitivity in preclinical states of non-insulin-dependent (Type 2) diabetes mellitus (NIDDM), we have done a cross-sectional, age-stratified analysis of 86 non-diabetic first-degree relatives of NIDDM patients and 49 controls with similar age, sex, and BMI. A 5 mg kg ideal body weight-1 min-1 for 60 min of continuous infusion of glucose with model assessment (CIGMA) of serum glucose and C-peptide values at the end of the infusion was used to determine glucose tolerance and beta-cell function. Insulin sensitivity was estimated by modelling basal serum glucose and insulin values. Relatives and controls were divided into tertiles on the basis of age. Relatives had higher basal (5.3 vs 5 mmol l-1, p = 0.02) and achieved serum glucose (9.1 vs 8.4 mmol l-1, p = 0.01), lower beta-cell function (128 vs 145%, p = 0.007), and lower insulin sensitivity (37 vs 43%, p = 0.002). Beta-cell function declined with age in relatives (from 139% in young subjects to 134% in intermediate subjects and to 111% in older subjects, p = 0.002) and this decline was associated with an increase in basal serum glucose (from 5.1 to 5.3 and to 5.7 mmol l-1, p = 0.000) and achieved glucose (from 8.3 to 9.1 and to 9.3 mmol l-1, p = 0.038), without significant changes in insulin sensitivity. These trends were observed even after the exclusion of subjects with mild glucose intolerance. We conclude that both beta-cell dysfunction and insulin resistance are present in first-degree relatives of NIDDM. The progression of beta-cell dysfunction and glucose intolerance with age suggests that beta-cell dysfunction is the key factor in the apparition and progression of the disease.  相似文献   

5.
The high-Km glucose transporter, GLUT-2, and the high-Km hexokinase of beta cells, glucokinase (GK), are required for glucose-stimulated insulin secretion (GSIS). GLUT-2 expression in beta cells of Zucker diabetic fatty (ZDF) rats is profoundly reduced at the onset of beta-cell dysfunction of diabetes. Because ZDF rats are homozygous for a mutation in their leptin receptor (OB-R) gene and are therefore leptin-insensitive, we expressed the wild-type OB-R gene in diabetic islets by infusing a recombinant adenovirus (AdCMV-OB-Rb) to determine whether this reversed the abnormalities. Leptin induced a rise in phosphorylated STAT3, indicating that the transferred wild-type OB-R was functional. GLUT-2 protein rose 17-fold in AdCMV-OB-Rb-treated ZDF islets without leptin, and leptin caused no further rise. GK protein rose 7-fold without and 12-fold with leptin. Preproinsulin mRNA increased 64% without leptin and rose no further with leptin, but leptin was required to restore GSIS. Clofibrate and 9-cis-retinoic acid, the partner ligands for binding to peroxisome proliferator-activator receptor alpha (PPARalpha) and retinoid X receptor, up-regulated GLUT-2 expression in islets of normal rats, but not in ZDF rats, in which PPARalpha is very low. Because the fat content of islets of diabetic ZDF rats remains high unless they are treated with leptin, it appears that restoration of GSIS requires normalization of intracellular nutrient homeostasis, whereas up-regulation of GLUT-2 and GK is leptin-independent, requiring only high expression of OB-Rb.  相似文献   

6.
We examined antepartum clinical characteristics along with measures of glucose tolerance, insulin sensitivity, pancreatic beta-cell function, and body composition in Latino women with gestational diabetes mellitus (GDM) for their ability to predict type 2 diabetes or impaired glucose tolerance (IGT) within 6 months after delivery. A total of 122 islet cell antibody-negative women underwent oral and intravenous glucose tolerance tests (OGTT; IVGTT), hyperinsulinemic-euglycemic clamps, and measurement of body fat between 29 and 36 weeks' gestation and returned between 1 and 6 months postpartum for a 75-g OGTT. Logistic regression analysis was used to examine the relationship between antepartum variables and glucose tolerance status postpartum. At postpartum testing, 40% of the cohort had normal glucose tolerance, 50% had IGT, and 10% had diabetes by American Diabetes Association criteria. Independent antepartum predictors of postpartum diabetes were the 30-min incremental insulin:glucose ratio during a 75-g OGTT (P = 0.0002) and the total area under the diagnostic 100-g glucose tolerance curve (P = 0.003). Independent predictors of postpartum IGT were a low first-phase IVGTT insulin response (P = 0.0001), a diagnosis of GDM before 22 weeks' gestation (P = 0.003), and weight gain between prepregnancy and the postpartum examination (P = 0.03). All subjects had low insulin sensitivity during late pregnancy, but neither glucose clamp nor minimal model measures of insulin sensitivity in the 3rd trimester were associated with the risk of IGT or diabetes within 6 months' postpartum. These results highlight the importance of pancreatic beta-cell dysfunction, detectable under conditions of marked insulin resistance in late pregnancy, to predict abnormalities of glucose tolerance soon after delivery in pregnancies complicated by GDM. Moreover, the association of postpartum IGT with weight gain and an early gestational age at diagnosis of GDM suggests a role for chronic insulin resistance in mediating hyperglycemia outside the 3rd trimester in women with such a beta-cell defect.  相似文献   

7.
One form of maturity-onset diabetes of the young (MODY) results from mutations in a gene, designated MODY3, located on chromosome 12 in band q24. The present study was undertaken to define the interactions between glucose and insulin secretion rate (ISR) in subjects with mutations in MODY3. Of the 13 MODY3 subjects, six subjects with normal fasting glucose and glycosylated hemoglobin and seven overtly diabetic subjects were studied as were six nondiabetic control subjects. Each subject received graded intravenous glucose infusions on two occasions separated by a 42-h continuous intravenous glucose infusion designed to prime the beta-cell to secrete more insulin in response to glucose. ISRs were derived by deconvolution of peripheral C-peptide levels. Basal glucose levels were higher and insulin levels were lower in MODY3 subjects with diabetes compared with nondiabetic subjects or with normal healthy control subjects. In response to the graded glucose infusion, ISRs were significantly lower in the diabetic subjects over a broad range of glucose concentrations. ISRs in the nondiabetic MODY3 subjects were not significantly different from those of the control subjects at plasma glucose levels <8 mmol/l. As glucose rose above this level, however, the increase in insulin secretion in these subjects was significantly reduced. Administration of glucose by intravenous infusion for 42 h resulted in a significant increase in the amount of insulin secreted over the 5-9 mmol/l glucose concentration range in the control subjects and nondiabetic MODY3 subjects (by 38 and 35%, respectively), but no significant change was observed in the diabetic MODY3 subjects. In conclusion, in nondiabetic MODY3 subjects insulin secretion demonstrates a diminished ability to respond when blood glucose exceeds 8 mmol/l. The priming effect of glucose on insulin secretion is preserved. Thus, beta-cell dysfunction is present before the onset of overt hyperglycemia in this form of MODY. The defect in insulin secretion in the nondiabetic MODY3 subjects differs from that reported previously in nondiabetic MODY1 or mildly diabetic MODY2 subjects.  相似文献   

8.
Freshly isolated adult rat ventricular cardiomyocytes have been used to characterize the action profile of the new thiazolidinedione antidiabetic drug MCC-555. Preincubation of cells with the compound (100 microM for 30 min or 10 microM for 2 h) did not modify basal 3-O-methylglucose transport, but produced a marked sensitizing effect (2- to 3-fold increase in insulin action at 3 x 10(-11) M insulin) and a further enhancement of maximum insulin action (1.8-fold). MCC-555 did not modulate autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). However, insulin action (10(-10) and 10(-7) M) on IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was enhanced 2-fold in the presence of MCC-555. Association of the p85 adapter subunit of PI 3-kinase to IRS-1 was not modified by the drug. Immunoblotting experiments demonstrated expression of the peroxisomal proliferator-activated receptor-gamma in cardiomyocytes reaching about 30% of the abundance observed in adipocytes. The insulin-sensitizing effect of MCC-555 was lost after inhibition of protein synthesis by preincubation of the cells with cycloheximide (1 mM; 30 min). Cardiomyocytes from obese Zucker rats exhibited a completely blunted response of glucose transport at 3 x 10(-11) M insulin. MCC-555 ameliorates this insulin resistance, producing a 2-fold stimulation of glucose transport, with maximum insulin action being 1.6-fold higher than that in control cells. This drug effect was paralleled by a significant dephosphorylation of IRS-1 on Ser/Thr. In conclusion, MCC-555 rapidly sensitizes insulin-stimulated cardiac glucose uptake by enhancing insulin signaling resulting from increased intrinsic activity of PI 3-kinase. Acute activation of protein expression leading to a modulation of the Ser/Thr phosphorylation state of signaling proteins such as IRS-1 may be underlying this process. It is suggested that MCC-555 may provide a causal therapy of insulin resistance by targeted action on the defective site in the insulin signaling cascade.  相似文献   

9.
To study the effects of massive weight loss on insulin secretion, we analysed the oscillations of fasting peripheral insulin levels in obese patients who underwent vertical banded gastroplasty as treatment for morbid obesity. Patients were studied before and 6 months after surgery. Serial measurements of plasma free insulin levels were obtained in duplicates from 0 to 60 min at one-minute intervals. Insulin levels were then analysed by autocorrelation and Fourier transformation. In normal controls and obese patients, the first oscillatory insulin component was detected between 10 and 14 min. Compared to obese controls (n = 4), overt Type 2 diabetic patients (n = 4) had reduced amplitudes of insulin pulses and no oscillatory component. These defects were not as pronounced in patients with impaired glucose tolerance (IGT) after an oral glucose tolerance test (OGTT) (n = 5). When detected, the periodicity of the oscillations occurred at different periods. In 3/5 IGT patients, the first positive peak of correlation was found at 13.3 +/- 2.3 min. Weight loss (mean +/- SD) after 6 months was 24.3 +/- 3.7 for subjects with normal glucose tolerance (NGT), 37.9 +/- 9 for those with IGT and 29.8 +/- 5 kgs for Type 2 diabetic subjects. After weight loss, insulin oscillatory activity was detected in 4/5 IGT patients, with a period of 13 +/- 3 min. Weight loss did not reverse the defects observed in obese diabetic patients despite a significant reduction in peripheral insulin levels from 28.6 +/- 6 to 15.6 +/- 6 mU/l (p < 0.05). Insulin values remained higher than in obese controls (7.82 +/- 2, p < 0.05), and Type 2 patients remained mildly hyperglycaemic. These findings indicate that beta-cell activity is abnormal in Type 2 diabetic patients. The absence of modification after weight loss suggests that inherent beta-cell defects may contribute to hyperglycaemia.  相似文献   

10.
Impaired glucose tolerance (IGT) and NIDDM are both associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose concentrations. The aim of this study was to establish if glucagon-like peptide 1 (GLP-1), a natural enteric peptide and potent insulin secretagogue, improves this defect. Two weight-matched groups, one with eight subjects having IGT (2-h glucose, 10.1 +/- 0.3 mmol/l) and another with seven subjects with diet-treated NIDDM (2-h glucose, 14.5 +/- 0.9 mmol/l), were studied on two occasions during a 12-h oscillatory glucose infusion, a sensitive test of the ability of the beta-cell to sense and respond to glucose. Glucose was infused with a mean rate of 4 mg x kg(-1) x min(-1), amplitude 33% above and below the mean rate, and periodicity of 144 min, with infusion of saline or GLP-1 at 0.4 pmol x kg(-1) x min(-1) for 12 h. Mean glucose levels were significantly lower in both groups during the GLP-1 infusion compared with during saline infusion: 9.2 +/- 0.4 vs. 6.4 +/- 0.1 mmol/l in the IGT subjects (P < 0.0004) and 14.6 +/- 1.0 vs. 9.3 +/- 0.7 mmol/l in NIDDM subjects (P < 0.0002). Despite this significant reduction in plasma glucose concentration, insulin secretion rates (ISRs) increased significantly in IGT subjects (513.3 +/- 77.6 vs. 583.1 +/- 100.7 pmol/min; P < 0.03), with a trend toward increasing in NIDDM subjects (561.7 +/- 122.16 vs. 642.8 +/- 128 pmol/min; P = 0.1). These results were compatible with enhanced insulin secretion in the presence of GLP-1. Spectral power was used as a measure of the ability of the beta-cell to secrete insulin in response to small changes in the plasma glucose concentration during the oscillatory infusion. Spectral power for ISR increased from 2.1 +/- 0.9 during saline infusion to 7.4 +/- 1.3 during GLP-1 infusion in IGT subjects (P < 0.004), but was unchanged in NIDDM subjects (1.0 +/- 0.4 to 1.5 +/- 0.6; P = 0.3). We concluded that low dosage GLP-1 improves the ability of the beta-cell to secrete insulin in both IGT and NIDDM subjects, but that the ability to sense and respond to subtle changes in plasma glucose is improved in IGT subjects, with only a variable response in NIDDM subjects. Beta-cell dysfunction was improved by GLP-1 infusion, suggesting that early GLP-1 therapy may preserve beta-cell function in subjects with IGT or mild NIDDM.  相似文献   

11.
Overaccumulation of fat in pancreatic islets of obese ZDF fa/fa rats is believed to cause beta-cell failure and diabetes. Previously, we demonstrated that ZDF islets have an increased capacity to esterify fatty acids imported via the circulation. Here we examine the capacity of ZDF islets to synthesize fatty acids de novo. Compared with age-matched wild-type (+/+) control islets, acetyl CoA carboxylase (ACC) mRNA was fivefold and sixfold higher and fatty acid synthetase (FAS) was fourfold and sevenfold higher in prediabetic and diabetic ZDF islets, respectively. Incorporation of label from [14C]glucose into lipids was 84% higher in ZDF islets and was not suppressed normally by fatty acids. Chronic hyperleptinemia, induced by adenoviral transfer of leptin cDNA, reduced ACC and FAS mRNA in +/+ islets by 93 and 80%, respectively, but did not decrease the high ACC and FAS expression in islets of fa/fa rats. Recombinant leptin cultured with islets isolated from +/+ rats lowered ACC and FAS expression by 66 and 47%, respectively, but had no effect in fa/fa islets. We conclude that de novo lipogenesis in islets is controlled by leptin and remains low in leptin-responsive islets. It is increased in leptin-insensitive fa/fa islets, contributing to the fat overload that leads to beta-cell dysfunction and diabetes.  相似文献   

12.
We investigated the effect of glucose infusion on beta-cell regeneration in rats made mildly diabetic by a single injection of low dosage (35 mg/kg) streptozotocin (STZ). Nondiabetic (ND) and STZ rats were submitted to a 48-h glucose infusion (hyperglycemia approximately 22 mmol/l in both groups: ND and STZ hyperglycemic-hyperinsulinemic [ND HG-HI and STZ HG-HI rats]). Before infusion, beta-cell mass was 65% lower in STZ rats than in ND rats (2.0 +/- 0.02 vs. 5.5 +/- 0.6 mg), 1.6-fold increased in ND HG-HI rats (8.7 +/- 1.7 mg), and 2.7-fold increased in STZ HG-HI rats (5.4 +/- 0.9 mg). In ND HG-HI rats, beta-cell enlargement was related to an increase in beta-cell responsiveness to nutrient secretagogues both in vivo and in vitro, whereas in STZ HG-HI rats, no significant improvement in insulin secretion could be noticed. To determine the respective role of hyperglycemia and hyperinsulinemia on beta-cell area changes, ND and STZ rats were submitted to a 48-h hyperinsulinemic-euglycemic clamp. No modification of beta-cell mass was detected in either group. In conclusion, 48-h superimposed hyperglycemia was enough to restore beta-cell mass previously reduced by STZ injection. This effect seemed to be due to hyperglycemia rather than hyperinsulinemia alone. The data stress the dissociation between beta-cell regeneration and improvement in islet function in diabetic rats. Our model seems suitable for studying factors that can improve the plasticity and function of the pancreas in NIDDM.  相似文献   

13.
GDM develops in 1-3% of all pregnancies. Women with GDM are characterized by a relatively diminished insulin secretion coupled with a pregnancy-induced insulin resistance primary located in skeletal muscle tissue. The cellular background for this insulin resistance is not known. The binding of insulin to its receptor and the subsequent activation of the insulin receptor tyrosine kinase have significant importance for the cellular effect of insulin. Thus, the pathogenesis to the insulin resistance was studied by investigating insulin receptor binding and tyrosine kinase activity in skeletal muscle biopsies from women with GDM and pregnant controls. No major abnormalities were found in GDM wherefore it is likely that the insulin resistance is caused by intracellular defects distal to the activation of the tyrosine kinase. Glucose tolerance returns to normal postpartum in the majority of women with GDM. However, previous studies, in populations quite different from a Danish population, have shown that women with previous GDM have a high risk of developing overt diabetes mellitus later in life. Hence, we aimed to investigate the prognosis of women with previous GDM with respect to subsequent development of diabetes and also to identify predictive factors for the development of overt diabets in these women. A follow-up study of diet treated GDM women diagnosed during 1978 to 1985 at the Rigshospital, Copenhagen was performed. Glucose tolerance was evaluated in 241 women (81% of the GDM population) 2-11 years after pregnancy. Abnormal glucose tolerance was found in 34.4% of the women (3.7% IDDM, 13.7% NIDDM, 17% IGT) in contrast to a control group where none had diabetes and 5.3% had IGT. Logistic regression analysis identified the following independent risk factors for later development of diabetes: a high fasting glucose level at diagnosis of GDM, a delivery more than 3 weeks before term, and an abnormal OGTT 2 months postpartum. Low insulin secretion at diagnosis of GDM was also an independent risk factor. The presence of ICA and GAD-autoantibodies in pregnancy was associated with later development of IDDM. In another study the following techniques: hyperinsulinaemic euglycaemic clamp, indirect calorimetry and tritiated glucose infusion were used to evaluate insulin sensitivity in glucose tolerant nonobese women with previous GDM and controls. A decreased insulin sensitivity due to a decreased non-oxidative glucose metabolism in skeletal muscle was found in women with previous GDM. Hence, the activity of three key enzymes in intracellular glucose metabolism (GS, HK and PFK) was studied in skeletal muscle biopsies obtained in the basal state and after 3 h hyperinsulinaemia, with the aim to identify the cellular defects causing the decreased insulin sensitivity. However, no abnormalities in enzyme activity was found. The same group of previous GDM women had a relatively reduced insulin secretion evaluated by the IVGTT. A longitudinal study of 91 GDM women showed a relatively reduced insulin secretion to oral glucose in pregnancy, postpartum as well as 5-11 years later. Thus the present review has shown that even nonobese glucose tolerant women with previous GDM are characterized by the metabolic profile of NIDDM i.e. insulin resistance and impaired insulin secretion. Hence, the combination of this finding together with the significantly increased risk for development of diabetes indicates that all women with previous GDM should have a regular assessment of their glucose tolerance in the years after pregnancy. The first OGTT should be performed around 2 months postpartum in order to diagnose women already diabetic and to identify women with the highest risk for later development of overt diabetes. Women with previous GDM comprise a target group for future intervention trials with the aim to prevent or delay development of NIDDM and IDDM.  相似文献   

14.
Previous studies demonstrating reduced plasma concentrations of ascorbic acid (AA) in diabetes and interactions between this vitamin and biochemical mechanisms such as synthesis of structural proteins, oxidative stress, polyol pathway and nonenzymatic glycation of proteins suggest that disturbed AA metabolism may be important in the pathogenesis of diabetic microangiopathy. However, limited information is available on the concentration of AA in tissues which develop diabetic complications. This study demonstrates reduced renal but not sciatic nerve or plasma AA concentration in two animal models of insulin-dependent diabetes mellitus, namely the STZ-diabetic rat and the spontaneously diabetic BB rat. Decreased lens AA concentration was also observed in STZ-diabetic rats. Improvement of glycaemic control by insulin treatment (albeit insufficient to achieve normoglycaemia) partially corrected lens and renal AA concentration in STZ-diabetic rats. AA treatment increased kidney and lens AA concentrations of STZ-diabetic and non-diabetic rats and corrected the abnormalities observed for untreated diabetic rats. Sciatic nerve AA concentration was not increased by AA treatment in any group. Tissue ratios of dehydroascorbic acid (DHAA)/AA, one index of oxidative stress, were not different between the diabetic and non-diabetic groups and were unaltered by AA supplementation. AA treatment of STZ-diabetic rats had no effect on elevated tissue concentrations of glucose, sorbitol and fructose or reduced myo-inositol concentration. The effect of reduced tissue AA levels in diabetes on either collagen synthesis or ability to combat increased free radical production is not known. However, correction of abnormal kidney and lens AA concentrations in experimental diabetes by AA supplementation suggests that if AA does have a role in the development or progression of the renal and ocular complications of diabetes, this treatment could be beneficial.  相似文献   

15.
Impaired glucose tolerance (IGT) is associated with defects in both insulin secretion and action and carries a high risk for conversion to non-insulin-dependent diabetes mellitus (NIDDM). Troglitazone, an insulin sensitizing agent, reduces glucose concentrations in subjects with NIDDM and IGT but is not known to affect insulin secretion. We sought to determine the role of beta cell function in mediating improved glucose tolerance. Obese subjects with IGT received 12 wk of either 400 mg daily of troglitazone (n = 14) or placebo (n = 7) in a randomized, double-blind design. Study measures at baseline and after treatment were glucose and insulin responses to a 75-g oral glucose tolerance test, insulin sensitivity index (SI) assessed by a frequently sampled intravenous glucose tolerance test, insulin secretion rates during a graded glucose infusion, and beta cell glucose-sensing ability during an oscillatory glucose infusion. Troglitazone reduced integrated glucose and insulin responses to oral glucose by 10% (P = 0.03) and 39% (P = 0.003), respectively. SI increased from 1.3+/-0.3 to 2.6+/-0.4 x 10(-)5min-1pM-1 (P = 0.005). Average insulin secretion rates adjusted for SI over the glucose interval 5-11 mmol/liter were increased by 52% (P = 0.02), and the ability of the beta cell to entrain to an exogenous oscillatory glucose infusion, as evaluated by analysis of spectral power, was improved by 49% (P = 0.04). No significant changes in these parameters were demonstrated in the placebo group. In addition to increasing insulin sensitivity, we demonstrate that troglitazone improves the reduced beta cell response to glucose characteristic of subjects with IGT. This appears to be an important factor in the observed improvement in glucose tolerance.  相似文献   

16.
Type 2 diabetes mellitus is a common metabolic disorder whose prevalence is increasing in the western world. The ravaging complications of the disease constitute a major cause of hospitalisation and cardiovascular morbidity, and despite intensive research the pathogenic mechanism remain unknown. The article summarises some recent advances in the field of islet beta-cell dysfunction caused by hyperlipidaemia in the diabetic state, which results in perturbed insulin secretory capacity and overt glucose intolerance. In contrast to hyperglycaemia, the detrimental effects of hyperlipidaemia have been a relatively neglected area of diabetes research. However, the direct inhibitory effects of long-term hyperlipidaemia on beta-cell function, 'lipotoxicity,' should form the basis of a more active approach to lipid screening and pharmacological treatment of hyperlipidaemia in diabetes patients. Intervention in the leptin pathway may prove beneficial in future treatment strategies.  相似文献   

17.
We examined the effect of oral administration of vanadyl sulfate by gavage on the levels of blood glucose and plasma insulin during oral glucose tolerance test (OGTT) in diabetic rats. Diabetes was induced by intravenous injection of streptozotocin at the dose of 32 mg/kg. Nondiabetic control animals were injected with an equal volume of saline. Vanadyl sulfate at a dose of 25, 50, or 75 mg/kg was given orally by gavage for 2 weeks, starting 12 hours after streptozotocin injection. When vanadyl sulfate was given twice a day, half of the one-day-dosage was given in the morning and the remaining half in the evening. Glucose tolerance test with 5 g/kg of glucose was carried out 2 weeks after administration of vanadyl sulfate. The fasting the blood glucose level in the diabetic rats was higher than that in the non-diabetic rats, whereas the plasma insulin level in the diabetic rats was lower. An increase in blood glucose seen in the glucose tolerance test was significantly greater in the diabetic rats than in the non-diabetic rats. The level of plasma insulin was increased by glucose tolerance test in the non-diabetic rats, while it was not changed in diabetic rats. Oral administration of vanadyl sulfate by gavage significantly improved the impaired glucose tolerance in the the diabetic rats in a dose-dependent manner without any change in plasma insulin level. In conclusion, oral administration of vanadyl sulfate by gavage is effective on impaired glucose tolerance in streptozotocin-induced diabetic rats.  相似文献   

18.
The effect of prolonged diabetes on epinephrine-induced adenosine 3',5'-monophosphate (cAMP) response in the liver was examined in diabetes-prone BB/W rats. Basal and 1 microM epinephrine-induced cAMP release from isolated perfused liver was similar in non-diabetic and diabetic BB/W rats with preserved adipose tissue. In adipose tissue-absent diabetic rats losing intra- and retro-peritoneal adipose tissue completely, both basal and 1 microM epinephrine-induced cAMP release from the liver were enhanced (P<0.01, each case). Plasma epinephrine and norepinephrine were similar in non-diabetic, adipose tissue-preserved and -absent diabetic BB/W rats. The plasma free thyroxine level was similar in non-diabetic and adipose tissue-preserved diabetic BB/W rats, but was lower in adipose tissue-absent diabetic BB/W rats than in non-diabetic rats (P<0.01), but the frequency of lymphocytic thyroiditis was similar in these three groups, although plasma corticosterone was lower in adipose tissue-preserved diabetic BB/W rats (P<0.05) and the lowest in adipose tissue-absent diabetic BB/W rats (P<0.01). Lymphocytic infiltration was not observed in the adrenal or pituitary glands in any group. Plasma total protein and albumin were low in adipose tissue-absent diabetic BB/W rats (P<0.01, each case). In adipose tissue-absent diabetic BB/W rats, liver dysfunction and hepatomegaly, but no apparent histological change in the liver, were observed. Plasma glucose was higher (P<0.01) and plasma insulin lower (P<0.05) in adipose tissue-absent diabetic BB/W rats than in adipose tissue-preserved diabetic BB/W rats. In conclusion, epinephrine-induced cAMP response in the liver was enhanced only in adipose tissue-absent diabetic BB/W rats. Denervation supersensitivity was not likely to be responsible for the enhanced beta-adrenergic response. The observed reductions in plasma thyroxine and corticosterone seemed to result from severe diabetes. Although the severity of diabetes can vary continuously, severe diabetes with loss of adipose tissue appeared to cause significant changes in the metabolism and enhanced beta-adrenergic response in the liver.  相似文献   

19.
Although insulin has been shown to raise plasma concentrations of endothelin (ET) and up regulate vascular smooth muscle ETA receptor expression, the interaction of vanadate, an insulinomimetic agent, with the vascular ET system has not been investigated. We compared the effects of oral vanadate treatment (0.5 mg/ml; p.o.) and insulin infusion (12 mU.kg-1.min-1 s.c.) for two weeks on plasma ET concentrations and vascular responses to endothelin-1 (ET-1) and the alpha-1 adrenoceptor agonist, methoxamine, in aortic ring preparations from streptozotocin (STZ) diabetic and non-diabetic adult male Sprague-Dawley rats. Plasma ET concentrations were lower (p < 0.01) in STZ diabetic rats compared with normal control rats. Insulin and vanadate treatment restored plasma ET to normal (p < 0.01) in STZ rats and increased ET concentrations in the control (p < 0.05) group. Higher maximal tension responses to both ET-1 (p < 0.01) and methoxamine (p < 0.05) were present in STZ rats in both endothelium intact and denuded aortic preparations compared with the control group. Both insulin and vanadate treatment returned these responses to normal. It is concluded that low plasma concentrations of insulin and high plasma glucose in STZ diabetic rats are accompanied by lower concentrations of plasma ET. Insulin and vanadate treatment restores diminished plasma ET to control concentrations and attenuates exaggerated agonist(s)-evoked vascular smooth muscle responses in STZ-induced diabetic rats. In addition to well known beneficial metabolic effects, insulin and vanadate may beneficially affect cardiovascular regulation in the STZ diabetic rat by correcting abnormal ET activity.  相似文献   

20.
OBJECTIVE: Type 2 diabetes is a slowly progressive disease, in which the gradual deterioration of glucose tolerance is associated with the progressive decrease in beta-cell function. Hyperglycemia per se has deleterious effects on both beta-cell function and insulin action, which are partially reversible by the short-term control of blood glucose levels. We hypothesized that the induction of euglycemia, using intensive insulin therapy at the time of clinical diagnosis, could lead to a significant improvement in insulin secretion and action and thus alter the clinical course of the disease. RESEARCH DESIGN AND METHODS: Thirteen newly diagnosed diet-unresponsive type 2 diabetic patients were treated with continuous subcutaneous insulin infusion (CSII) for 2 weeks and followed longitudinally while being treated with diet alone. RESULTS: Four patients were considered therapeutic failures since CSII failed to induce euglycemia (n = 1) or glucose control deteriorated within 6 months after CSII (n = 3). The remaining nine patients were maintained on diet alone with adequate control from 9 to > 50 months (median +/- SE, 26 +/- 4.8 months). In five patients, glycemic control deteriorated after 9-36 months, but a repeat 2-week CSII treatment reestablished control in four patients. One of these patients underwent a third CSII treatment 13 months later. At the time this article was written, six patients of the initial group were still controlled without medication 16-59 months (median +/- SE, 45.5 +/- 6.6 months) after the initiation of treatment. Body weight remained unchanged in all patients. CONCLUSIONS: These findings suggest that in a significant proportion of type 2 diabetic patients who fail to respond to dietary measures, short-term intensive insulin treatment can effectively establish responsiveness, allowing long-term glycemic control without medication. Further studies are required to establish whether simpler treatment regimens could be equally effective. If the hypothesis offered here finds support, present approaches to the management of newly diagnosed type 2 diabetes may need to be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号