首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用FLUENT软件对多热源SiC合成炉内的气氛环境进行数值模拟,并结合X射线衍射、扫描电子显微镜对合成产物进行表征分析。研究了热源及其结合部能量及物质的传递过程,揭示了碳热还原合成碳化硅能量及物质扩散机理。研究表明,随着合成反应的进行,大量气相物质会首先从热源周围向四周扩散,气相物质穿过热源周围的SiC结晶层,产生大量孔隙,反应进行到60~72h时,热源周围温度达到2696℃,分解产生的Si蒸气与未反应的C粒反应生成SiC,填补孔隙,而在热源结合部,热流强度较小,透气性差,扩散动力减弱,气相物质难以扩散,产品品位明显下降。  相似文献   

2.
多热源工业合成SiC技术   总被引:3,自引:0,他引:3  
介绍了自行发明的多热源炉合成SiC技术的基本原理.研究了炉内温度场的叠加特点和温度梯度的变化规律.对比了单热源炉、二热源炉和三热源炉的实验室合成效果.工业应用表明三热源炉比传统单热源炉可节能10%~15%;一级品率提高30%;单炉产量可提高约50%,特级品SiC含量由传统技术的98%提高到99.5%以上.多热源工业合成SiC新技术具有节能、高质、高产和生产安全等特点, 而且极便于炉体的大型化.  相似文献   

3.
陈杰  王晓刚 《硅酸盐通报》2013,32(11):2212-2216
通过对碳热还原合成SiC冶炼炉温度场的数值模拟及实验,揭示了冶炼炉内温度场的演变规律.研究表明,碳化硅合成过程中,热量以热源为中心呈辐射状向外传递,其合成温度(1600℃)等温面也逐渐向外扩大,表现为SiC的合成反应温区增大;SiC的大量合成发生在中后期,合成持续,SiC合成温区面积增加缓慢.合成时间过长,会导致已生成的SiC分解,容易形成实际生产中喷炉事故;适当比例的SiC分解,有利于形成高致密的碳化硅产品.  相似文献   

4.
李阳  陈杰  王旭阳  王飞  王晓刚 《硅酸盐通报》2017,36(10):3498-3503
过数值模拟及工业实验的方法分别对多热源和单热源合成炉内的温度场及压力场进行分析,研究了两种合成炉内温度及压力的演变规律.结果表明由于多热源的能量叠加效应,使得适合于碳化硅合成的温度区域明显高于单热源,且分散的热源避免了能量过于集中从而减少碳化硅的分解量,同时从两种合成炉压力分布图可以看出,单热源炉内压力最高为1.525×101 kPa极易发生喷炉事故,而多热源最高压力为1.256×101 kPa,此压力相比而言能保证合成过程的平稳进行.  相似文献   

5.
介绍了自主研发设计的新型碳化硅合成炉合成原理.研究了炉内温度场,压力场的变化规律,模拟结果和实验结果与传统单热源进行对比.研究表明,热源并联式全透气碳化硅合成炉可以有效增加合成反应区域,炉内压力维持在0.101~0.113 MPa之间,所产生的CO气体能从排气装置顺利排出,炉内气体最大流速不超过0.6 m/s,从而有效防止喷炉事故和有毒气体对人员危害,合成产品的致密性明显提高.  相似文献   

6.
以废轮胎热解炭与石英粉为原料,通过高温碳热反应制备出碳化硅.考察了温度和时间对生成碳化硅的影响,采用X射线衍射、红外光谱和扫描电子显微镜对制备的碳化硅进行了表征.结果 表明:温度和时间对合成碳化硅有显著影响,1 300℃时即可生成β-SiC,但反应缓慢,300 min后产物中仍有大量原料未反应;当温度升到1 520℃、反应180 min时,大部分原料已转化为SiC,而反应300 min时,可使合成SiC的反应趋于完全,产物由粒径为100~200 nm的小颗粒聚集而成.  相似文献   

7.
研究了碳化硅(SiC)陶瓷表面铬金属化机理及SiC-SiC和SiC-Cu的封接技术。SiC在1000—1250℃真空环境中表面铬金属化,然后利用铜基合金钎焊封接.8iC—SiC封接体的室温四点抗弯强度平均值为103MPa,最大值140MPa。 对接合界面结构的研究发现Cr扩散入SiC基体并在界面处存在着反应层Cr_3C_2,同时si逸失。在SiC与金属Cr之间形成Cr_3C_2,表明SiC的封接是可行的。  相似文献   

8.
曹适意  王军  王浩 《化工进展》2012,31(8):1745-1750
液态超支化聚碳硅烷(LHBPCS)作为一种SiC陶瓷前体,因具有流动性好、可自交联、陶瓷产率高及热解产物接近SiC化学计量比等优点而备受关注。本文在介绍液态超支化聚碳硅烷特点的基础上,重点综述了它的合成方法,包括开环聚合法、Grignard偶合聚合法、Wurtz偶合聚合法、硅氢加成法等,并总结了液态超支化聚碳硅烷在碳化硅基复合材料、碳化硅纤维、碳化硅薄膜等领域的应用,最后指出液态超支化聚碳硅烷今后的研究重点是规模化合成及改性研究等。  相似文献   

9.
分别以Al(OH)3为铝质原料,气相白炭黑和硅灰为硅质原料,在1330 ℃下实现了莫来石的低温合成,莫来石转化率达90%以上.以碳化硅为骨料,以20%结合剂制得了莫来石结合碳化硅复相陶瓷多孔材料.当材料的气孔率为31.46%时,抗折强度达85.75 MPa.利用XRD和SEM分别研究了不同硅质原料合成莫来石结合碳化硅材料中莫来石转化率及材料烧成温度对材料性能的影响.作为比较,研究了以红柱石为合成莫来石原料来制备Mullite/SiC复相陶瓷多孔材料.  相似文献   

10.
以微米碳化硅基体,氧化铝和氧化钇为烧结助剂,淀粉为造孔剂,采用无压烧结技术制备碳化硅多孔陶瓷.通过测试合成多孔陶瓷的密度、收缩率、力学强度以及扫描电子显微镜(SEM)和X-射线衍射(XRD)等研究了不同造孔剂含量对SiC粉体的力学性能、微观形貌和物相的影响.研究表明:随造孔剂含量的升高,碳化硅陶瓷密度和强度降低,气孔率增加,而造孔剂含量对碳化硅陶瓷的物相组成基本没有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号