首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
南台子煤催化加氢热解产物分布的初步研究   总被引:1,自引:0,他引:1  
以新疆伊犁南台子煤为考察对象,在常压固定床反应器上和温度500℃~700℃范围内,系统研究了以氧化铁为主催化剂和硫为助剂时,催化加氢热解过程中产物的分布.结果表明,氧化铁的加入最高可使焦油产率增加约2%,半焦产率下降约4%,水产率增加约4%,气产率略有降低.助剂硫的加入有利于与铁生成Fe1-xS,从而有利于煤的催化加氢热解.  相似文献   

2.
采用共混法将不同配比的玉米秸秆与神府煤混合后进行低温共热解实验,再用Fe2O3催化剂对其进行催化热解,以探索玉米秸秆对神府煤热解焦油的影响及Fe2O3催化剂对玉米秸秆和神府煤共热解的影响.结果表明:在相同反应条件下,玉米秸秆添加量过高,焦油产率下降,半焦产率升高,当玉米秸秆添加量为6%时焦油产率最高,可达12.77%,添加10%Fe2O3催化剂时共热解焦油产率可达14.69%.玉米秸秆与神府煤共热解所产生的焦油中C10以下的物质居多,占总物质的31.99%,高出原煤热解14.78%,其主要成分为苯类物质和苯酚类物质,相对质量分数分别为5.49%和19.48%,且还有醛类物质和羧酸类物质生成;在添加Fe2O3催化剂后,共热解焦油中C10以下的物质占总物质的45.72%,比玉米秸秆与神府煤共热解时高13.77%,苯类物质与苯酚类物质比玉米秸秆与煤共热解产生焦油中的同类物质分别提高了6.03%和7.14%,并产生了茚类物质和少量的二十二醇与烯烃,但其他长链烃类与多环芳烃的相对质量分数均有不同程度的减少.  相似文献   

3.
利用固定床反应器,考察了浸渍法添加硝酸铁、氯化铁和硫酸亚铁铵等铁基催化剂对煤加氢热解特性的影响,对提高焦油产率较显著的硫酸亚铁铵的作用过程进行了探讨,并对其焦油进行了分析评价.结果表明,添加这三种催化剂时煤加氢热解的转化率都有提高,其中在添加5%(质量分数,以铁计)的硫酸亚铁铵时焦油的产率提高最为显著,由不加催化剂时的14.3%(质量分数,daf)提高到17.9%;铁的价态不同对煤加氢热解的催化作用不同,铵根的存在有利于煤热解转化率和焦油产率的提高;采用硫酸亚铁铵为催化剂时煤热解得到的焦油品质优于无催化剂时得到的焦油品质.  相似文献   

4.
采用自行研发的煤的低温干馏装置,将不同配比下的Fe2O3/CaO与长焰煤进行低温催化热解实验,以探索Fe2O3/CaO对低阶煤催化干馏的反应规律。结果表明:随着催化剂Fe2O3/CaO的添加,煤气产率增加约3%,煤气中CH4和H2的含量分别可达到35.69%和17.73%;焦油收率略有降低,但焦油中直链烷烃,以及一些高附加值的化合物如萘、菲、茚、芴等,含量不断增大,实现了低温煤焦油中高附加值化工产品的富集;半焦产率增加约3%,半焦表面变得凹凸不平并有龟裂纹,导致半焦的反应性增加。在对低阶煤热解过程中,Fe2O3和CaO的催化作用具有一定的协同性。  相似文献   

5.
磁性纳米四氧化三铁的制备工艺及其表面改性   总被引:3,自引:1,他引:2  
采用共沉淀法制备纳米Fe3O4胶体溶液,并用油酸钠对其进行包覆改性。制备了不同条件下的纳米Fe3O4粒子,用X射线分析仪、振动样品磁强计、扫描电子显微镜、傅立叶红外光谱仪对产品进行分析表征。探讨了制备纳米Fe3O4的最佳工艺条件以及油酸钠改性的可行性。结果表明,Fe3+和Fe2+的摩尔比为4∶2时,反应1.0 h,50℃晶化1.0 h,制备的Fe3O4晶粒度为11.2 nm,磁饱和强度为56.337 emu/g;油酸钠用于Fe3O4改性,包覆效果良好。  相似文献   

6.
以SiO2为硅源,炭黑为碳源,Fe2 O3为催化剂,采用碳热还原法在氩气保护下制备SiC微粉,研究催化剂含量,合成温度对SiC生成、形貌的影响.实验结果表明:在原料中添加Fe2 O3粉,1350℃保温3h就能产生SiC微粉;由X射线衍射分析显示,在1450℃下保温3h基本上全部转化为晶粒尺寸在50 nm左右SiC微粉;在相同温度下,随着Fe2 O3用量的增加,SiC产率增加.添加Fe2O3能加快反应速度以及提高SiC微粉的生成量.  相似文献   

7.
应用固定床反应器研究了铁基催化剂Fe2O3、Fe S、Fe(NO3)3对伊犁南台子煤催化加氢热解产物分布和半焦结构的的影响。结果表明:添加铁基催化剂后,加氢热解中气产率增加最大为17.78个百分点,半焦产率下降最大为21.41个百分点。利用BET法对半焦进行了结构分析,结果发现,添加Fe(NO3)3后所制得的半焦的比表面积和总孔体积分别为不添加催化剂所制得的半焦的6倍和1.7倍。从TG和DTG图中发现,加入铁基催化剂后,半焦活性增加,其中Fe(NO3)3的作用最明显,热失重速率最大,说明半焦活性较大。  相似文献   

8.
利用自制的低温热解装置研究褐煤与大豆荚共热解的产物特性,考察大豆荚掺混比和催化剂Fe2O3对热解产物特性的影响。通过FT-IR、GC-MS、SEM-EDX和UV-vis分析共热解产物的性质,并将半焦用于亚甲基蓝吸附实验。研究结果表明:掺混比30%时,共热解焦油的产率达到最大值11.98%,比煤焦油产率增加44.86%,与计算值的正偏差最大(0.8%),同时,大豆荚的添加有促进焦油生成的协同作用。大豆荚的添加有利于共热解焦油中含氧杂环的断裂,使共热解焦油中直链烷烃增多,芳香族化合物减少,使重质组分转化为轻质组分,从而提高焦油品质;同时,大豆荚的添加使共热解半焦的含氧基团增加,微观形貌变粗糙。而Fe2O3的加入使共热解焦油中酚、醇类物质增加;加Fe2O3共热解半焦的褶皱更加明显。共热解半焦对亚甲基蓝的吸附率为33.62%,比煤半焦的吸附率提高8.84%,加Fe2O3共热解半焦的吸附率为55.57%,比共热解半焦提高65.29%。  相似文献   

9.
以煤油共炼残渣与榆林煤为原料,基于热重分析仪和格金干馏仪,开展共炼残渣与煤共热解过程的协同效应及半焦性质研究。实验结果表明:共炼残渣添加比例为0~40%时,煤与共炼残渣之间具有正的协同效应;添加量为20%时,焦油产率高出理论值6.2%,是煤单独热解焦油产率的139.7%,半焦产物为A型且黏结性增加;半焦性质分析结果显示,共炼残渣能够提高半焦在CO2气化过程中的最大失重速率,有利于气化反应的进行,但会使半焦的燃烧性能变差且在添加量高于20%的情况下更为明显。  相似文献   

10.
为了提高煤热解焦油的产率和品质,在小型流化床实验台上分别考察了N_2,N_2+H_2,CH_4+N_2,CH_4+H_2等气氛及前置Ni/Al_2O_3催化剂对流化床煤热解的影响,结果表明:H_2气氛会减少半焦产率,增加焦油产率;CH_4气氛在800℃时反而会增加半焦产率,同时高温下CH_4的分解对焦油产率的增加有促进作用,相比于N_2气氛,焦油产率提高了35.8%;CH_4+H_2气氛下半焦焦油产率的总体趋势同H_2气氛下相同.还原性气氛有利于焦油的轻质化:H_2,CH_4+N_2,CH_4+H_2气氛下800℃时,轻质焦油的占比分别较N_2气氛提高了29.1%,15.2%,24%.在CH_4+N_2和CH_4+H_2气氛下,采用前置Ni/Al_2O_3催化剂后,焦油产率都得到不同程度的提升.CH_4+N_2气氛下600℃时,催化剂可以使焦油产率较无催化剂时提高40%;CH_4+H_2气氛下800℃时,催化剂对CH_4的催化效果更好,热解气中CH_4含量明显减少,而焦油产率较无催化剂时提高了37%.Ni/Al_2O_3催化剂可以进一步提高焦油的品质,并且有利于焦油中芳香烃的生成.  相似文献   

11.
采用化学共沉淀方法制备Fe_3O_4磁性粒子,并使用油酸和十一烯酸对其进行表面改性,然后采用一步细乳液聚合法制备含有羧基官能团的Fe_3O_4/P(St/ACPA)磁性高分子纳米球,对磁流体和磁性高分子纳米球进行性能表征。结果表明,改性的Fe_3O_4磁流体分散性好,粒径均一,在室温下呈超顺磁性,磁含量为68.5%(w),饱和磁化强度为51.3emu/g;Fe_3O_4/P(St/ACPA)磁性高分子纳米球成球性好,粒径为70 nm,磁含量为39%(w),饱和磁化强度为27.9 emu/g。  相似文献   

12.
采用多元醇还原法制备出平均粒径为6.0 nm的Fe3O4磁性纳米粒子,以此磁性纳米粒子为核,在OP-10/正丁醇/环己烷/浓氨水反向微乳体系中制备出Fe3O4/TiO2磁性纳米复合粒子,通过XRD,TEM,VSM对复合粒子进行性能表征。结果表明,采用微乳液法能够制备出Fe3O4/TiO2磁性纳米复合粒子,并且包覆后比饱和磁化强度有所下降,但矫顽力仍趋近于0,显示超顺磁性。  相似文献   

13.
采用化学共沉淀法制备了油酸包覆的Fe3O4磁性纳米粒子,以此为核·采用分散聚合法制备了表面带有环氧基团的Fe3O4/聚甲基丙烯酸缩水甘油酯(PGMA)磁性复合微球,探讨了聚合工艺、聚合条件对甲基丙烯酸缩水甘油酯(GMA)利用效率的影响规律,并用傅立叶变换红外光谱仪(FTIR)、热重分析仪(TGA)、振动样品磁强计(VSM)和扫描电镜(SEM)等对磁性复合微球的结构、磁性能和包覆量进行了表征.采用盐酸一丙酮法测定了磁性复合微球表面环氧基的含量。结果表明,在优化的条件下。GMA利用效率高达61.26%。磁性复合微球具有良好的单分散性·粒径为1~2μm.具有超顺磁性.比饱和磁强度为17.12emu·g^-1。环氧基含量达3.5mmol·g^-1。  相似文献   

14.
固体超强酸催化剂S2O2-8/Fe2O3-Al2O3的制备及其酯化性能   总被引:2,自引:0,他引:2  
以硝酸铁为铁源、硝酸铝为铝源,通过共沉淀法制备固体超强酸催化剂S2O2-8/Fe2O3-Al2O3。通过催化剂样品的FT-IR谱图、不同焙烧温度催化剂样品的XRD谱图、不同陈化温度的N2吸附-脱附曲线以及催化剂样品的SEM照片,研究了其晶体的形成过程。催化剂样品红外谱图表明,催化剂中的S=O有较强的共价双键特征,诱导催化剂形成超强酸性;在XRD谱图中既无Al2O3的晶相峰,也无Fe2(SO4)3晶相峰,说明Al2O3与Fe2O3 在催化剂样品的表面形成了Al2O3-Fe2O3 共价键的复杂结构。采用BET方程和BJH模型计算催化剂样品的比表面积和孔径分布,经冰水陈化的催化剂样品平均孔径为9.1 nm,最可几孔径为7.5 nm,比表面积为78.9 m2·g-1,孔容0.149 cm3·g-1。研究了催化剂的铁与铝物质的量比、(NH4)2S2O8浸渍浓度和不同焙烧温度对硬脂酸正丁酯酯化率的影响。在反应温度85 ℃、催化剂用量0.2 g (为反应物总质量的2%)和回流反应150 min的条件下,酯化率可达84.5%。  相似文献   

15.
采用浸渍法将磷钨酸、磷钼酸和硅钨酸等杂多酸负载在Fe3O4磁性材料上,并将杂多酸/Fe3O4磁性材料作为光催化剂用于降解次甲基蓝溶液,考察了光源类型(紫外光与太阳光)、杂多酸种类及催化剂用量等对光催化降解效果的影响。结果表明,在250 W汞灯照射、次甲基蓝溶液浓度20 mg·L-1、降解体系pH=5.5、光催化剂用量30 mg和光催化120 min条件下,次甲基蓝降解率达85%,负载型杂多酸/Fe3O4磁性催化剂对次甲基蓝的降解效果明显优于相应单一的Fe3O4或杂多酸催化剂。  相似文献   

16.
采用Fe3O4分别与BaO、Ba(OH)2在不同质量配比物理混合后对六氯苯(HCB)在反应温度为300℃、时间为10 min的条件下进行了降解研究。结果发现BaO、Ba(OH)2分别与Fe3O4物理混合后对HCB的降解效率都高于各单一组分,表明不仅Fe3O4与BaO的混合物对HCB的降解存在协同降解效应,而且Fe3O4与Ba(OH)2的混合物对HCB的降解也存在协同降解效应,且这种协同效应能促进HCB的深度加氢脱氯。而不同质量配比的Fe3O4与Ba(OH)2、BaO混合物表现出不同的活性,当质量配比为40∶10时降解活性最高,分别为96.2%、91.5%。根据降解产物分析,推测了Fe3O4与Ba(OH)2混合物对HCB的协同加氢脱氯降解机制。  相似文献   

17.
研究以FeSO4·7H2O和FeCl3·6H2O为原料,NH3·H2O作为沉淀剂,采用共沉淀法制备纳米Fe3O4颗粒,利用IR(红外光谱)、XRD(X射线衍射)等表征手段对割得的纳米颗粒进行了表征。结果表明:制备的纳米Fe3O4粒子粒径较细,且粒径分布较窄。据此找出制备纳米Fe3O4粒子的最佳实验条件为:铁盐溶液浓度为0.5mol/L,沉淀剂溶液浓度为0.2mol/L,Fe^2+:Fe^3+:OH^-=1.00:1.00:6.00,反应温度为30℃。制备纳米Fe3O4粒子粒径在10-20mm,且分散性较好;通过XRD谱图可以得出产物为具有立方晶系的纳米Fe3O4粒子。  相似文献   

18.
采用等体积浸渍法制备了催化剂,研究了Ni/Al2O3,Fe/Al2O3,CoMo/Al2O3和NiCo/Al2O3催化剂对甘油水蒸汽重整制氢反应的催化效果,对催化剂进行BET、TPR、XRD表征,以氢产率为实验指标对催化剂进行了评价。研究结果表明,CoMo/Al2O3催化剂在温度650℃氢产率6.02。NiCo/Al2O3催化剂在温度600℃、水醇比16、液空速0.12 h-1条件下的氢产率为6.08。催化剂活性次序为NiCo/Al2O3Co-Mo/Al2O3Ni/Al2O3Fe/Al2O3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号