首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
基于认知无线电系统的协作中继分布式功率分配算法   总被引:2,自引:0,他引:2  
协作通信与直接通信相比能够显著地提高系统性能。协作通信中的一个关键问题是管理中继节点及有效地进行功率分配。尤其对于频谱共享的认知无线电(Cognitive Radio,CR)系统,协作方案的设计不仅要最大限度地提高认知网络协作的功率效率,而且需要最小化对主系统的干扰。该文针对认知无线电系统的协作通信问题,在多个中继节点与源节点协同通信的场景下,提出了一种基于放大转发(Amplify and Forward,AF)模式下的功率分配及联合优化算法,在保证主系统传输性能不受影响的前提下,提高认知系统的传输速率。仿真结果表明该文提出的自适应协作传输方案,和直接传输及等功率传输方案相比获得了进一步的性能增益,中断概率显著下降。  相似文献   

2.
In this article, the problem of downlink subcarrier allocation in a cooperative wireless multiuser OFDM system is investigated. We consider a single-cell where all the users are paired in cooperative groups. The mobile users in each group amplify and forward their partner’s data stream using a time division protocol. Based on the capacity contribution from the relaying terminal, a new parameter called cooperation coefficient is introduced as a function of the relaying subchannel. This parameter is used to modify the objective parameter of the subcarrier allocation procedure. Fairness-oriented and throughput-oriented algorithms are selected from the literature to test the proposed technique. Both algorithms are modified to employ the mean of cooperation coefficient in the objective parameter of the subcarrier allocation procedure and shown to have a better total throughput without any sacrifice. Using the mean of cooperation coefficient eliminates the need for the feedback of the relaying channel to the base station. It is shown that by using the mean value of the cooperation coefficient, instead of its instantaneous value, throughput of the system would still improve compared to the non-cooperative case. Using the mean of cooperation coefficient leads to an implementable cooperative subcarrier allocation algorithm.  相似文献   

3.
Power-Minimizing Rate Allocation in Cooperative Uplink Systems   总被引:1,自引:0,他引:1  
The rate-allocation problem, which has been aimed at minimizing the total transmit power in cooperative uplink systems, is investigated. Each user transmits over an orthogonal frequency band using cooperative broadcasting. The broadcasting nature of the wireless channel is exploited by allowing users to act as relays for one another. All users operate in the decode-and-forward mode. Depending on the number of relays that was selected by a user, we suggest two schemes: 1) the flow-optimized cooperative scheme (FCS) and 2) the single-relay cooperative scheme (SCS). We develop rate-allocation algorithms for them. In our simulation, we compare the outage performance of our schemes with two other schemes: 1) the orthogonal cooperative scheme and 2) direct transmission. Results indicate that our schemes achieve full diversity order and outperform other compared schemes. The algorithm for FCS achieves the optimality, whereas the algorithm for SCS is near optimal. In addition, our algorithms have fast convergence performance. SCS has a lower complexity than FCS, but it requires a higher total transmit power. However, the difference in total transmit power between FCS and SCS is not large under practical rate requirements. In addition to the total transmit power, we consider the improvement in the individual transmit powers of the users.   相似文献   

4.
In this paper, new dynamic resource allocation algorithms are investigated for the downlink of multiuser multiple-input multiple-output orthogonal frequency-division multiple-access and space-division multiple-access (MU-MIMO-OFDMA/SDMA) systems. Firstly, a mathematical formulation of the optimization problem is presented with the objective of maximizing the total system throughput under the constraints of each user’s quality of service (QoS) requirement and the integer modulation orders available on each spatial subchannel. Secondly, since it is difficult to obtain the optimal solution to the joint optimization problem, the whole optimization procedure is divided into two steps, namely, the subcarrier-user scheduling and the resource allocation. In the first step, a new metric is proposed to measure the spatial compatibility of multiple users, each with multiple receive antennas, based on which a new scheduling algorithm is designed to identify the optimal sets of selected users over all subcarriers. In the second step, two dynamic resource allocation algorithms are developed to assign radio resources to the scheduled users subcarrier by subcarrier. Simulation results demonstrate that the proposed algorithms outperform the traditional allocation methods based on random scheduling scheme. Especially, the performance of the algorithm, combined with power reuse strategy, approaches closely to that of the optimal allocation method based on user selection.  相似文献   

5.
赵亚楠  季薇  宋云超  李飞 《信号处理》2021,37(7):1324-1331
在传统的协作非正交多址(CNOMA, Cooperative Non Orthogonal Multiple Access)系统中,通常需要向弱用户分配更多的功率,分配给强用户的功率不超过总功率的一半。同时,强用户还需在协作阶段承担中继通信的任务。上述功率分配方式必将给强用户带来一定的负担。为了在满足弱用户服务质量的情况下,进一步提高强用户的中断性能,本文提出一种基于中继和无线携能通信(SWIPT, Simultaneous Wireless Information and Power Transfer)的新型功率分配方案。该方案使用能量收集设备收集能量,通过最大化系统和速率寻求无线携能通信的最优功率分割因子,从而获得系统中断概率的闭式表达。考虑到优化问题的性质,本文提出了一种在功率分配固定的情况下,通过单调优化求解无线携能通信功率分割因子的算法。仿真结果表明,与CNOMA系统的传统功率分配方案相比,本文所提方案能够在不损失弱用户中断性能的前提下,有效提升强用户的中断概率,系统和速率总体提高了近 20%。   相似文献   

6.
针对多用户正交频分复用(OFDM)系统自适应资源分配的问题,提出了一种新的自适应子载波分配方案。子载波分配中首先通过松弛用户速率比例约束条件确定每个用户的子载波数量,然后对总功率在所有子载波间均等分配的前提下,按照最小比例速率用户优先选择子载波的方式实现子载波的分配;在功率分配中提出了一种基于人工蜂群算法和模拟退火算法(ABC-SA)相结合的新功率分配方案,并且通过ABC-SA算法的全局搜索实现了在所有用户之间的功率寻优,同时利用等功率的分配方式在每个用户下进行子载波间的功率分配,最终实现系统容量的最大化。仿真结果表明,与其他方案相比,所提方案在兼顾用户公平性的同时还能有效地提高系统的吞吐量,进而证明了所提方案的有效性。  相似文献   

7.
8.
Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user’s minimal rate and each antenna’s maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.  相似文献   

9.
针对多用户协作中继系统中的资源分配问题,提出了一种在满足用户速率比例公平约束条件下的新算法。该算法先将由2个时隙组成的中继用户传输链路转换为一个等效信道链路,将涉及子载波分配、中继选择和功率分配的组合优化问题转化为分步的次优化问题。该算法在等功率分配情况下,根据各用户速率比例公平系数进行初步子载波数目分配;以瞬时信道增益最佳原则,进行剩余子载波数目分配及具体子载波分配,同时完成中继选择;在速率比例公平约束条件下推导出次优化功率分配的闭式表达式,从而完成各子载波上的功率分配。仿真结果表明,该算法在有效提高系统容量的同时,保证了各用户速率之间的比例公平性。  相似文献   

10.
For conventional subcarrier pairing schemes in cooperative orthogonal frequency division multiplexing amplify and forward multi-relay networks, to avoid interference, each subcarrier pair (SP) is assigned to only one relay. Over a specific subcarrier, the destination receives signals transmitted from only one relay. In our subcarrier pairing scheme, we assign each SP to all the relays. Thus, over a specific subcarrier, the destination receives signals transmitted from all the relays. Since it is assumed that there exists the direct link from the source to the destination, we assume that the source also transmits signals during the second time slot for the direct transmission mode. We propose an enhanced joint subcarrier pairing and power allocation optimization scheme which maximizes the transmission rate subject to total network power constraint. The problem is simplified and solved by using dual method. It is shown from simulation results that our proposed scheme outperforms the other schemes.  相似文献   

11.
基于比例公平原则的多用户MIMO-OFDM系统资源分配   总被引:1,自引:1,他引:0  
曹欢  张静  董建萍 《电视技术》2011,35(9):62-65
提出了一种基于比例公平原则提高MIMO-OFDM系统吞吐量的子载波和功率分配算法.它在总功率和误比特率的约束下,以获取最大系统吞吐量为目标,同时为兼顾用户间资源享用的公平性,根据用户速率成比例推导出了子载波分配限制准则.仿真结果表明,本算法不仅可满足不同用户的速率要求,而且平衡了容量最大化和用户间公平性的矛盾,同时计算...  相似文献   

12.
In this paper, the problem of power allocation in a cooperative cognitive radio (CR) network is investigated. An optimal power allocation is proposed to maximize efficiency of the secondary network in which secondary users transmit simultaneously over a spectral band assigned to the primary users. The CR network employs directional relays to improve efficiency of the communication links and minimize interference introduced to the primary users. Unlike the conventional cooperative relay‐assisted network, the directional relays are grouped in clusters. This clustering technique along with directional transmission can significantly reduce interference to the primary links and improve the system performance. Two algorithms are also developed on the basis of the penalty method to determine unknown transmission powers. Some corroborant numerical examples are provided to illustrate quick convergence behavior of the proposed algorithms and great superiority of employing clustered directional relays in cooperative CR networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Cooperation Strategies and Resource Allocations in Multiuser OFDMA Systems   总被引:1,自引:0,他引:1  
Cooperative communication and orthogonal frequency-division multiplexing (OFDM) technology are both promising candidates for next-generation wireless communication systems. In this paper, we investigate cooperation strategies and resource-allocation algorithms for multiuser cooperative orthogonal frequency-division multiple-access (OFDMA) systems. There are two major contributions of this paper. First, we propose a novel cooperation strategy for the OFDMA system. When there are two users in the system, the strategy achieves the capacity region upper bound for decode-and-forward (DF) cooperation. When there are multiple users in the system, the strategy can achieve near upper-bound performance in certain network topologies. Moreover, the strategy always outperforms those that are previously proposed for cooperative OFDMA systems. The second contribution is that we develop novel centralized resource-allocation algorithms for cooperative OFDMA systems. The advantages of the algorithms are that they not only simultaneously solve relay, power, and subcarrier allocation but also have complexity that increases only linearly with the number of subcarriers in the systems.   相似文献   

14.
Node cooperation is an emerging and powerful solution that can overcome the limitation of wireless systems as well as improve the capacity of the next generation wireless networks. By forming a virtual antenna array, node cooperation can achieve high antenna and diversity gains by using several partners to relay the transmitted signals. There has been a lot of work on improving the link performance in cooperative networks by using advanced signal processing or power allocation methods among a single source node and its relays. However, the resource allocation among multiple nodes has not received much attention yet. In this paper, we present a unified crosslayer framework for resource allocation in cooperative networks, which considers the physical and network layers jointly and can be applied for any cooperative transmission scheme. It is found that the fairness and energy constraint cannot be satisfied simultaneously if each node uses a fixed set of relays. To solve this problem, a multi-state cooperation methodology is proposed, where the energy is allocated among the nodes state-by-state via a geometric and network decomposition approach. Given the energy allocation, the duration of each state is then optimized so as to maximize the nodes utility. Numerical results will compare the performance of cooperative networks with and without resource allocation for cooperative beamforming and selection relaying. It is shown that without resource allocation, cooperation will result in a poor lifetime of the heavily-used nodes. In contrast, the proposed framework will not only guarantee fairness, but will also provide significant throughput and diversity gain over conventional cooperation schemes.  相似文献   

15.
High energy-e?cient wireless communica-tion has become hot due to global low-carbon economy. The systems total transmitting power can be saved by resource allocation in cooperative spectrum sharing net-works. In cooperative spectrum sharing, the secondary user relays the primary users tra?c, as a return, the sec-ondary user is admitted to access the licensed spectrum for its own data transmission. An optimal power and time al-location are presented to minimize the overall energy con-sum ption with the users service quality guaranteed in co-operative spectrum sharing. We formulated it as a convex problem and achieve its optimal power and time allocation in closed form. We analyze the performance of two different transmission protocols for the single relay channel.  相似文献   

16.
In order to improve the efficiency and fairness of radio resource utilization,a scheme of dynamic cooperative subcarrier and power allocation based on Nash bargaining solution(NBS-DCSPA) is proposed in the uplink of a three-node symmetric cooperative orthogonal frequency division multiple access(OFDMA) system.In the proposed NBS-DCSPA scheme,resource allocation problem is formulated as a two-person subcarrier and power allocation bargaining game(SPABG) to maximize the system utility,under the constraints of each user’s maximal power and minimal rate,while considering the fairness between the two users.Firstly,the equivalent direct channel gain of the relay link is introduced to decide the transmission mode of each subcarrier.Then,all subcarriers can be dynamically allocated to the two users in terms of their selected transmission mode.After that,the adaptive power allocation scheme combined with dynamic subcarrier allocation is optimized according to NBS.Finally,computer simulation is conducted to show the efficiency and fairness performance of the proposed NBS-DCSPA scheme.  相似文献   

17.
This paper investigates the subcarrier and power allocation problems of multi-user space-time block coded OFDM based cellular systems. Based on the tradeoff between the number of assigned subcarriers and the amount of allocated power for users, a less complexity algorithm that separates subcarrier allocation and power allocation is proposed. Simulation results show that the proposed resource allocation algorithm can improve the capacity significantly compared with static FDMA fixed allocation algorithm and the MIMO-OFDMA scheme, and the more important thing is that it can make the capacity be distributed more fairly, very close to the ideal rate constraints, among users than the scheme which maximizes the system capacity only.  相似文献   

18.
陈瑾平  杨绿溪 《信号处理》2011,27(12):1824-1830
正交频分多址(OFDMA)技术以其更高的频谱效率和抗多径衰落特性成为高速无线通信网络的候选标准。兼顾效率和公平性是OFDMA系统资源分配亟待解决的问题。本文研究了OFDMA系统中的无线资源分配问题,既要保证QoS用户的最小速率要求,同时“尽力而为”用户之间必须满足最小速率最大化公平性(max-min fairness)准则;该资源分配问题可以表述为一个系统总功率约束下的子载波分配和功率控制的混合离散型优化模型,这是难解的NP-hard问题,穷举搜索的代价是极其巨大的。针对该非凸模型,本文设计一个拉格朗日松弛的优化算法,该算法中采用修正的椭球算法求解对偶问题。算法具有多项式时间复杂度,且与子载波数目呈线性增长关系。仿真结果表明,该算法能近似最优地满足用户QoS及最大最小公平性要求。   相似文献   

19.
在原有动态资源分配算法基础上,提出了一种基于用户速率需求的动态资源分配算法。该算法在满足用户数据速率需求和服务质量要求(QoS)的前提下,以用户公平性为原则,分步执行子载波和比特分配来降低系统总的发射功率。首先,通过比较不同子载波对用户速率的影响,引入速率影响因子,对子载波进行分配;然后为每个用户子载波分配比特,并根据用户速率需求进行比特调整。为了进一步降低系统的复杂度,提出了一种通过子载波分组来完成子载波比特分配的方法。仿真结果表明,该算法能够降低系统功耗、误码率和系统复杂度。  相似文献   

20.
针对基于中继的OFDM蜂窝网络,该文考虑具有不同QoS要求的混合业务场景,引入合作传输机制,提出了一种基于合作中继的QoS感知资源调度算法,解决了合作中继节点选取,子载波分配以及功率控制等问题。以最大化系统效用为目标,在考虑QoS业务的速率要求与基站功率约束的同时,针对中继结构引入了中继节点的功率约束。为降低计算复杂度,将原非线性组合优化问题分解为子载波分配与功率控制两个子问题。仿真结果表明,该文所提算法在能量节约、系统效用,吞吐量等性能方面都有显著优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号