首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
王莹 《包装工程》2023,44(7):30-35
目的 采用非等温差示扫描量热法(DSC)和傅里叶红外光谱(FT–IR)研究海因环氧/双酚A型氰酸酯(BAE)和海因环氧/四甲基双酚F型氰酸酯(TBF)的固化反应行为。方法 通过Kissinger、Ozawa和Crane法对2种树脂体系的固化动力学参数进行了计算,并采用热重分析(TGA)和热机械分析(DMA)评价树脂改性前后的热稳定性和热力学性能。结果 海因环氧改性氰酸酯树脂体系均呈现双重固化放热峰,TBF体系具有相对更高的表观活化能,而BAE体系具有更好的耐热性能,其玻璃化转变温度(tg)和在氮气下质量损失率为5%时的温度分别为271.6℃和403.4℃。结论 海因环氧树脂可以促进氰酸酯的聚合反应,制备的改性树脂体系可用于耐高温树脂基体和电子封装等材料。  相似文献   

2.
氰酸酯树脂增韧改性的研究进展   总被引:5,自引:0,他引:5  
综述了目前氰酸酯树脂增韧改性的各种方法,包括热塑性树脂增韧、热固性树脂增韧、橡胶弹性体增韧、热致液晶聚合物增韧等,讨论了改性氰酸酯树脂的应用前景.  相似文献   

3.
改性双马来酰亚胺树脂的研究   总被引:1,自引:0,他引:1  
合成了2,2′-亚甲基-二(4-甲基-6-烯丙基)苯酚,用它增韧二苯甲烷型双马来酰亚胺树脂,对改性双马来酰亚胺预聚物的凝胶化时间、DSC分析和FT-IR分析的研究,得到了改性双马来酰亚胺树脂体系的固化条件为180℃/1h+200℃/2h+250℃/4h;热重分析法研究了双马来酰亚胺树脂体系的热分解反应动力学,得出体系的热分解反应活化能为274.4kJ/mol;改性双马来酰亚胺树脂体系常温弯曲强度为124MPa,弯曲模量为3774.6MPa,250℃下弯曲强度保留69%,弯曲模量保留78%。  相似文献   

4.
通过溶剂法设计合成出了结构中含有硅元素的新型苯并噁嗪单体(Si-BOZ),以其作为改性体系对双马来酰亚胺树脂(BMI)进行共混改性,在降低BMI预聚物粘度的同时优化其固化工艺,改善其综合性能。选用平板小刀法测定了Si-BOZ、BMI、Si-BOZ/BMI等树脂体系的凝胶时间,红外光谱(FTIR)跟踪研究了Si-BOZ和BMI在固化过程中所发生的化学反应,非等温差示扫描量热法(DSC)研究了Si-BOZ/BMI树脂体系的固化反应动力学特征,并通过Kissinger法和Ozawa法对两者固化过程中的各参数进行了讨论。  相似文献   

5.
复合材料旋翼桨叶用高性能树脂基体及其复合材料   总被引:1,自引:0,他引:1  
本文提供了一种经过改性的高性能的树脂基体,并对这种树脂体系及其复合材料的固化特性、工艺性、力学与热性能等进行了深入的研究。 该树脂体系有较长的凝胶时间和较低的本体粘度,可以在中温(100~120℃)下完全固化,得到坚韧和高模量的树脂基体。用该树脂基体制成的复合材料具有很好的力学与热性能,它成功地应用于小型直升机复合材料旋翼桨叶的试制。  相似文献   

6.
张宝艳  李萍 《材料导报》1998,12(4):69-71
通过分析冲击后压缩强度(CAI)的测试过程,指出改善树脂基体与纤维之间的界面粘结效果,可有效地提高纤维增强复合材料的抗冲击损伤能力,即可提高CAI值。文中选用新型烯丙其酚氧树脂(AE)对改性聚醚酮(PEK-C)增韧的双马树脂基体及复合材料体系进行进一步增韧改性。结果表明,AE对双马纯树脂基体的冲击性能和耐热性能影响不大,但明显提高了改性BMI/T300复合材料体系的层间剪切强度和CAI值,并且改性  相似文献   

7.
改性双马来酰亚胺的研究   总被引:2,自引:0,他引:2  
本文研究了双马来酰亚胺与烯丙基化合物形成的改性树脂体系的固化和热性能,讨论了单体配比、增韧剂、催化剂对性能的影响。  相似文献   

8.
有机硅/聚氨酯改性树脂的研制   总被引:8,自引:0,他引:8  
以丙三醇和蓖麻油聚氨酯(PU)改性有机硅树脂,研究了PU的结构等因素对改性体系热性能及抗冲击强度的影响,结果表明,PU的含量对改性体系的热分解行为及抗冲击性有明显影响;丙三醇PU和蓖麻油PU分别改性的有机硅树脂在性能上有明显差异,前者的抗冲击性优于后者,但热性能较差。  相似文献   

9.
液态和混合烯丙基酚改性BMI树脂研究   总被引:4,自引:0,他引:4  
以二苯甲烷双马来酰亚胺(BMI)为基础,用液态的烯丙基甲酚(AC)和二烯丙基双酚A(DABP,DA)或二者的混合物,并配少量扩链剂(A)作为共聚单体,对AI增韧改性。对BMI/AC/DA/A(体系Ⅲ)和BMI/AC/A(体系Ⅳ)的研究表明,经熔融和溶液预聚合的各改性树脂具有良好的均相稳定性、工艺性和反应性;固化树脂具有优异的耐热性和耐冲击性,可在200℃长期使用。用体系Ⅲ为基 树脂测试了其复合材料  相似文献   

10.
以烯丙基苯酚(AP)、烯丙基(对、间和混合)甲酚为烯丙基化试剂,与甲氧基二苯醚反应,制备了一系列以烯丙基为活性基团的改性二苯醚树脂。用双马来酰亚胺固化改性二苯醚树脂的反应性良好,树脂固化物具有良好的力学性能和耐热性。  相似文献   

11.
苯乙烯与BMI树脂的反应性研究   总被引:6,自引:0,他引:6  
以BMI、二烯丙基双酚A和苯乙烯共聚制得一种低粘度、贮存期长、适用于压铸成型制备复合材料的树脂体系。本文重点研究了树脂的贮存稳定性、反应性及固化树脂的力学性能和耐热性。  相似文献   

12.
适用于RTM在室温传递的低粘度改性氰酸酯树脂研究   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了苯基乙烯基化合物(苯乙烯、二乙烯基苯)改性双酚A型氰酸酯(BADCy)树脂体系。通过实验并用三角形图示方法确定了树脂体系的组成和配方,解决了树脂在较低温度下(<40℃)的分相问题,用含杂原子的小分子化合物作为增容剂有效地降低了改性树脂的粘度并增大了贮存稳定性。该树脂适用于室温RTM工艺成型复合材料。  相似文献   

13.
采用聚醚砜(PES)对氰酸酯树脂改性,制备出PM915树脂。对PM915树脂的工艺性能和固化物性能进行了系统研究,该树脂成膜性和贮存稳定性良好,适用于热熔法预浸料工艺。研究了PM915树脂的流变性能及凝胶时间,树脂在70℃时的黏度为20 Pa·s左右,在120℃条件下可保持黏度稳定时间达115 min,160℃时凝胶时间为40 min。PM915树脂制备过程中部分反应热已释放,其拥有较低的固化放热焓,固化温度为220℃。通过引入热塑性组分PES,PM915树脂的固化收缩率低至0.16%。PM915树脂固化物具有优良的热性能,热失重5%时的温度Td5=423℃,玻璃化转变温度Tg=276℃,热膨胀系数为4.4×10?5/℃。通过热塑性树脂的改性,引入了柔性基团,进而提高了树脂固化物的韧性,PM915树脂固化物的弯曲强度和弯曲模量分别为139.3 MPa和4.2 GPa,拉伸强度和拉伸模量分别为75.8 MPa和3.8 GPa;扫描电子显微镜(SEM)表征显示PM915树脂固化物为韧性断裂。结果表明,PM915树脂是一种适用于热熔法预浸料的氰酸酯树脂基体,且具有低固化收缩率、高尺寸稳定性和优良耐热性,可应用于卫星等航天器结构件。   相似文献   

14.
一种耐高温加成固化型酚醛树脂作为复合材料基体的评价   总被引:7,自引:1,他引:6  
制备了烯丙基化程度可达 173%的烯丙基酚醛树脂(AN173),并与双马来酰亚胺(BMI)以 1 ∶1 的质量比进行共聚,制备了双马改性的烯丙基酚醛树脂(BMAN173) 。研究了该树脂工艺性,确定了其固化制度,考察了该树脂石英布复合材料层合板的耐热性和力学性能。实验结果表明,BMAN173 树脂具有良好的工艺性,适合于RTM、模压成型等多种成型工艺。BMAN173树脂固化物表现出良好的耐热性,其储能模量起始下降温度约为390℃, 起始热分解温度超过430℃。与传统酚醛树脂相比,该树脂的复合材料的高温力学性能优异,350℃弯曲强度和层间剪切强度保留率分别约为57%和62%;复合材料具有优异的热性能,其储能模量起始下降温度约为410℃,玻璃化转变温度超过了450℃。BMAN173树脂是耐高温复合材料的理想候选基体树脂。  相似文献   

15.
为了开发适于树脂传递模塑(RTM)成型的低熔体黏度热固性聚酰亚胺树脂,采用2,2′,3,3′-三苯二醚四甲酸二酐(3,3′-HQDPA)和3,3′,4,4′-三苯二醚四甲酸二酐(4,4′-HQDPA)的混合物与3种不同的二胺单体合成了3种系列的苯乙炔封端的热固性聚酰亚胺树脂,其中二胺为4,4′-二氨基二苯醚(ODA),4,4’-二氨基-2,2’-双三氟甲基联苯(TFDB)和2-苯基-4,4′-二氨基二苯醚(p-ODA)。文中系统地研究了酰亚胺预聚物的结构和相对分子质量对预聚物的聚集态结构、熔体黏度及对固化后薄膜的热性能、力学性能的影响。研究结果表明,与ODA和TFDB不同,p-ODA的特殊化学结构使得由它合成的酰亚胺预聚物(相对分子质量为750)表现为无定形态,并在低温区具有极低的熔体黏度。它在200℃至280℃区间内任意温度恒温2 h后,熔体黏度都低于1 Pa·s,更适宜RTM成型。  相似文献   

16.
一种RTM 用苯并噁嗪树脂的工艺性及其复合材料性能   总被引:4,自引:0,他引:4  
制备了一种可用于树脂传递模塑( RTM) 工艺的高性能苯并噁嗪共混树脂体系( BA21) 。研究了BA21 的注射工艺性, 确定了其固化程序, 并考察了采用RTM 工艺制备的BA21 基复合材料的基本力学性能。升温及恒温黏度测试结果表明, BA21 树脂体系能够用于RTM 工艺。依据修正的双阿累尼乌斯方程建立了与实验数据较为吻合的化学流变模型, 利用该模型可以选择合适的注射温度。通过不同温度下的恒温DSC 测试及修正的Kamal 动力学模型计算得到BA21 树脂体系的固化反应级数, 并确定后固化温度为200 ℃。采用RTM 工艺制得的玻璃纤维/ BA21 复合材料表现出优异的力学性能, 弯曲强度达600 MPa , 弯曲模量达30 GPa , 冲击强度达210 kJ/ m2 。   相似文献   

17.
BMI树脂化学流变模型及RTM工艺窗口预报研究   总被引:10,自引:0,他引:10       下载免费PDF全文
研究用于航空结构复合材料的RTM工艺专用双马来酰亚胺树脂(BMI)体系化学流变特性,并建立其双阿累尼乌斯流变模型。模型对树脂粘度的模拟结果与实验结果具有良好的一致性。所建立的粘度模型可有效模拟该树脂在不同工艺条件下的粘度行为,准确预报树脂体系的低粘度工艺窗口,为优化RTM工艺参数和保证产品质量提供必要的科学依据。   相似文献   

18.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

19.
Properties of modified anhydride hardener and its cured resin   总被引:1,自引:0,他引:1  
Methyl-nadic-tetrahydric-methylanhydride (MNA), nadic-tetrahydric-methylanhydride (NA), anhydride hardener was modified by solid diol molecule to improve the impregnation resin fracture toughness in cryogenic temperature. The lap-shear strength, transverse tension as well as the thermal shock test showed that the resin cured by the modified anhydride hardener had higher bond strength and more toughness at 77 K. After the experiment of vacuum pressure impregnation (VPI) processing, it was found that this resin had a longer usable life, better impregnating properties, but higher initial viscosity than the resin hybrid HY925 as hardener.  相似文献   

20.
《Composites Part A》2007,38(3):994-1009
Resin Transfer Moulding (RTM) has great potential as an efficient and economical process for fabricating large and complicated composite structural components. The low capital investment cost required and process versatility in component integration and assembly make RTM very attractive for high volume automotive applications. One of the challenges facing the automotive field is the resulting surface finish of manufactured components. The shrinkage associated with the curing of thermoset resins contributes to the poor surface quality. Low profile additives (LPA) are added to the resin to compensate for the cure shrinkage; however their effects on the thermal, rheological and morphological properties of polyester resins are not well understood. In this paper, the effect of LPA on cure kinetics, cure shrinkage and viscosity of a polyester resin is studied through differential scanning calorimetry (DSC) and special rheological techniques. Models are developed to predict cure shrinkage, LPA expansion, cure kinetics and viscosity variations of the resin as a function of processing temperature. Finally, morphological changes in the resin with and without LPA, during isothermal cure, are studied with hot stage optical microscopy. The results show that the LPA content in the range tested had no significant effect on the cure kinetics. However, higher LPA content reduced cure rate and cure shrinkage. A minimum of 10% LPA was required to compensate for cure shrinkage. Shrinkage behavior of all formulations was similar until a degree-of-cure of 0.5. However, resin formulations with higher LPA content showed expansion at later stages during curing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号