首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
金属Pd催化的Suzuki偶联反应是碳-碳偶联反应中重要的反应之一。综述了近年来Pd催化Suzuki偶联反应的研究进展,其中包括Suzuki反应机理、配体种类及其在有机合成中的应用。介绍了含N、P配体的钯催化剂和碳纳米管、磁性材料、多孔材料、水滑石、金属氧化物、高分子材料等负载的无配体钯催化剂的研究进展。  相似文献   

2.
常见的含氮配体如席夫碱类化合物用于钯催化Suzuki反应,由于其性能稳定,催化反应过程不产生有毒物质等优点,近年来受到化学工作者的广泛关注。本论文简要总结了近年来用于钯催化Suzuki反应的常见含氮配体催化性能,讨论了常见含氮配体用于钯催化Suzuki偶联反应中催化的活性以及反应产物的研究价值,文献发现,大部分的催化剂对Suzuki偶联反应具有极高的催化效果。  相似文献   

3.
金属钯催化的Suzuki偶联反应是碳一碳偶联反应中的最重要的反应之一。传统的均相催化体系具有很多的不足,如产物与催化剂不易分离、原料价格昂贵、催化剂不能重复使用等,而使用无配体负载钯的催化剂可有效地解决上述问题。综述了近些年来无配体材料负载钯催化Suzuki偶联反应的研究进展,载体包括碳材料、多孔分子筛、水滑石、高分子材料、金属氧化物、硅藻土、纤维素、磷灰石和氟硅胶等。  相似文献   

4.
在合适的钯催化作用下,可将廉价易得、低活性的氯代芳烃应用于C—C键和C杂键形成的偶联反应。对偶联反应用钯催化剂的研究进行了综述。通过选择合适的配体,钯催化剂可有效地催化带有多种体取代基的氯代芳烃或氯代杂芳烃,发生Suzuki、Negishi、Stille和Heck等多种偶联反应,获得较高的收率和很高的选择性。  相似文献   

5.
钯催化的Suzuki偶联反应作为有效的构建碳-碳键的方法,在天然产物、药物全合成和有机合成工业中被广泛应用。而目前广泛应用的含钯均相催化剂尽管反应活性高,但昂贵钯金属盐或配合物不易回收,痕量残留于目标产品或者废液中,导致目标产品重金属污染和环境污染等弊端,极大地增加了该反应的成本和降低了产品的安全性,因此期望以易回收使用、低钯浸出的异相催化剂来实现对该反应的高效绿色催化。氮杂环卡宾钯配合物(NHC-Pd)在催化Suzuki偶联反应中具有反应活性高、稳定好等优点常被用作异相催化剂的催化中心。该文从异相催化剂的载体材料如高分子材料、多孔硅材料、碳基材料、金属-有机框架及磁性纳米粒子等出发,综述了近年来NHC-Pd在异相催化Suzuki偶联反应中的最新研究进展,对于今后该研究方向的开展具有指导意义。  相似文献   

6.
过渡金属Pd催化的Suzuki偶联反应是构建C-C键的重要反应之一,在许多领域都有着广泛应用.在离子液体中进行的Suzuki偶联反应具有反应活性高、选择性好等特点.含有Pd配体的功能化离子液体直接催化Suzuki偶联反应可提高催化活性,容易实现产物与催化剂分离.固载化离子液体可有效地解决催化剂难以重复使用的问题.  相似文献   

7.
钯催化剂催化卤代芳烃和芳基硼酸生成碳一碳键的Suzuki偶联反应是合成联苯化合物的最重要的途径之一。相比于传统均相钯催化剂的利用率低,污染产品等缺点,磁性钯催化剂易回收,可重复利用,具有工业化应用前景,受到了广泛的关注。综述了近年来无配体磁性钯催化剂、无包裹磁性钯配体催化剂以及以碳、氧化硅、聚合物包裹的具有核壳结构的磁性钯配体催化剂的制备及其催化Szuki偶联反应的研究进展。  相似文献   

8.
以4-羟基-3甲氧基苯乙酮为原料,通过肟化反应合成了4-羟基-3甲氧基苯乙酮肟,并以氯钯酸锂为钯源,合成了4-羟基-3-甲氧基苯乙酮肟环钯配合物。通过傅立叶红外(FT-IR)和紫外-可见漫反射光谱(UV-vis-DRS)对合成的配合物进行了表征。考察了溶剂与溶剂含水量、碱、催化剂用量等反应条件对4-羟基-3甲氧基苯乙酮肟环钯配合物催化Suzuki偶联反应的影响。当以碳酸钾为碱,乙醇水溶液(50vol%)为溶剂,催化剂量为0.01%(1×10-4mmol),60℃下催化对溴苯乙酮与苯硼酸Suzuki偶联反应,反应15min时,产品收率可达98.76%,表明4-羟基-3-甲氧基苯乙酮肟环钯配合物催化剂具有很高的催化效率。  相似文献   

9.
钯催化的卤代芳烃和芳基硼酸的Suzuki偶联反应,是有机合成中形成碳-碳键最为有效的方法之一,但均相钯催化剂的回收和利用一直是个难题.负载型催化剂的出现,为实现贵金属钯与产物的高效分离和回收提供了可能.本文对负载钯催化剂的载体进行分类讨论,对近年来可回收钯催化剂在Suzuki偶联反应中的应用研究进行了简要阐述,并对其发...  相似文献   

10.
过渡金属钯催化的Suzuki偶联反应是有机合成中的重要反应之一。固载钯催化剂具有制备简单、易分离、廉价等优点;碳材料具有大的比表面积、良好的孔结构、性质稳定、容易回收再生等优点,是理想的钯催化剂载体。综述了不同碳材料负载钯催化剂催化Suzuki偶联反应的研究进展。  相似文献   

11.
偶联反应一般是指C-C偶联或C-N等的偶联,像Still反应、Suzuki反应和Buchwald反应等,它们中的反应催化剂一直以来是使用均相钯配体催化剂,对于负载型钯催化剂的使用较少。将载钯催化剂用于偶联反应是有机合成反应中均相反应多相化的典型例子,且在工业化生产中较均相催化剂更具有优势。从负载钯催化剂的制备、介孔碳的制备及反应驱动力三个方面介绍了偶联反应的近期进展,并对未来发展进行了展望。  相似文献   

12.
Suzuki芳基偶联反应是构建联苯芳烃和多联苯芳烃结构单元的重要反应之一。传统的Suzuki偶联反应的催化剂多数是均相催化剂,催化活性很高,但存在催化剂回收困难、污染产品等缺点。固定化技术可有效地解决上述问题,已成为Suzuki偶联反应的催化剂研发的热点。综述了近些年来以无机碳、金属氧化物、多孔分子筛等无机材料为载体负载钯催化Suzuki偶联反应的最新进展。  相似文献   

13.
We report on a systematic study of the use of palladium nanoparticles immobilized on spherical polyelectrolyte brushes – Pd@SPB – for Heck‐ and Suzuki‐type coupling reactions. The spherical polyelectrolyte brush particles serving as carriers for the palladium nanoparticles consist of a solid polystyrene core with a radius of 46 nm onto which long chains of cationic polyelectrolytes are grafted. The palladium nanoparticles have directly been generated within this brush layer and the stabilization of the nanoparticles is effected by the colloidal carriers, no further surface stabilization is necessary. We demonstrate that these composite particles present robust catalysts for the Heck‐ and Suzuki‐type coupling reactions. This was shown by carrying out the Suzuki‐ and Heck‐type coupling reactions at relatively low temperatures (Suzuki reaction: 50 °C, Heck reaction: 70 °C). We demonstrate that the catalytic composite particles are not changed by these reaction conditions and retain their full activity for at least four runs. The yields obtained for both reactions are good to excellent. The mild operation conditions of the palladium nanoparticles are traced back to the absence of surface stabilization. Further mechanistic implications are discussed.  相似文献   

14.
Various mono‐ and polymetallic palladium complexes containing a 2‐pyridyl‐1,2,3‐triazole (pyta) ligand or a nonabranch‐derived (nonapyta) ligand have been synthesized by reaction of palladium acetate with these ligands according to a 1:1 metal‐ligand stoichiometry and used as catalysts for carbon‐carbon cross‐coupling including the Suzuki–Miyaura, Sonogashira and Heck reactions. The unsubstituted monopalladium and nonapalladium complexes were insoluble in all the reaction media, whereas tri‐ and tetranuclar palladium complexes were soluble, which allowed conducting catalysis under either homogeneous or heterogeneous conditions. The organopalladium complexes were characterized by standard analytical and spectroscopic methods and by thermogravimetry showing decomposition above 110 °C. Both types of catalysts showed excellent activity for these cross carbon‐carbon bond formations involving aryl halides including activated aryl chlorides or acyl chloride. Besides the comparison between homogeneous and heterogeneous catalysis, the key feature of these catalysts is their remarkable robustness that allowed recycling at least ten times in the example of the Heck reaction with excellent yields and without significant reduction of the conversion.  相似文献   

15.
A wide array of forms of palladium has been utilized as precatalysts for Heck and Suzuki coupling reactions over the last 15 years. Historically, nearly every form of palladium used has been described as the active catalytic species. However, recent research has begun to shed light on the in situ transformations that many palladium precatalysts undergo during and before the catalytic reaction, and there are now many suggestions in the literature that narrow the scope of types of palladium that may be considered true “catalysts” in these coupling reactions. In this work, for each type of precatalyst, the recent literature is summarized and the type(s) of palladium that are proposed to be truly active are enumerated. All forms of palladium, including discrete soluble palladium complexes, solid‐supported metal ligand complexes, supported palladium nano‐ and macroparticles, soluble palladium nanoparticles, soluble ligand‐free palladium, and palladium‐exchanged oxides are considered and reviewed here. A considerable focus is placed on solid precatalysts and on evidence for and against catalysis by solid surfaces vs. soluble species when starting with various precatalysts. The review closes with a critical overview of various control experiments or tests that have been used by authors to assess the homogeneity or heterogeneity of catalyst systems.  相似文献   

16.
Heterogeneous (supported) palladium catalysts like palladium on carbon and a variety of metal oxides have been shown to be highly active for Suzuki coupling reactions in neat water under mild reaction conditions (T=65 °C). It has been demonstrated for the first time that hydrophobic effects of the catalyst surface play an important role for the catalyst activity in water. Catalysts possessing hydrophobic surfaces (e.g., palladium on carbon) show higher activity for Suzuki coupling reactions in water than their hydrophilic counterparts (palladium on metal oxides). Tuning of the surface polarity of metal oxide supports (by silylation) results in higher activity under these conditions. Stronger alkaline conditions (three‐fold excess of base) compensate the effect of hydrophobic supports and result in high activity of the catalysts also with hydrophilic supports. The addition of tetrabutylammonium bromide to generate, activate and stabilize the catalytic species (dissolved palladium complexes) is necessary for the conversion of more demanding substrates. The reaction is considered to be homogeneous taking place near the catalyst surface inside a droplet or layer of the reactant.  相似文献   

17.
Hybrid silica materials containing the di‐(2‐pyridyl)methylamine‐palladium dichloride complex, prepared by sol‐gel cogelification, are efficient recyclable catalysts for Suzuki (aryl bromides and chlorides), Heck (aryl bromides) and Sonogashira reactions (aryl iodides and bromides). Formation of palladium(0) nanoparticles is observed in the Suzuki and Heck reactions but not in the Sonogashira coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号