首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Finite-Difference TVD Scheme for Computation of Dam-Break Problems   总被引:1,自引:0,他引:1  
A second-order hybrid type of total variation diminishing (TVD) finite-difference scheme is investigated for solving dam-break problems. The scheme is based upon the first-order upwind scheme and the second-order Lax-Wendroff scheme, together with the one-parameter limiter or two-parameter limiter. A comparative study of the scheme with different limiters applied to the Saint Venant equations for 1D dam-break waves in wet bed and dry bed cases shows some differences in numerical performance. An optimum-selected limiter is obtained. The present scheme is extended to the 2D shallow water equations by using an operator-splitting technique, which is validated by comparing the present results with the published results, and good agreement is achieved in the case of a partial dam-break simulation. Predictions of complex dam-break bores, including the reflection and interactions for 1D problems and the diffraction with a rectangular cylinder barrier for a 2D problem, are further implemented. The effects of bed slope, bottom friction, and depth ratio of tailwater∕reservoir are discussed simultaneously.  相似文献   

2.
Upwind Conservative Scheme for the Saint Venant Equations   总被引:1,自引:0,他引:1  
An upwind conservative scheme with a weighted average water-surface-gradient approach is proposed to compute one-dimensional open channel flows. The numerical scheme is based on the control volume method. The intercell flux is computed by the one-sided upwind method. The water surface gradient is evaluated by the weighted average of both upwind and downwind gradients. The scheme is tested with various examples, including dam-break problems in channels with rectangular and triangular cross-sections, hydraulic jump, partial dam-break problem, overtopping flow, a steady flow over bump with hydraulic jump, and a dam-break flood case in a natural river valley. Comparisons between numerical and exact solutions or experimental data demonstrated that the proposed scheme is capable of accurately reproducing various open channel flows, including subcritical, supercritical, and transcritical flows. The scheme is inherently robust, stable, and monotone. The scheme does not require any special treatment, such as artificial viscosity or front tracking technique, to capture steep gradients or discontinuities in the solution.  相似文献   

3.
Dam-break problems involve the formation of shocks and rarefaction fans. The performance of 20 explicit numerical schemes used to solve the shallow water wave equations for simulating the dam-break problem is examined. Results from these schemes have been compared with analytical solutions to the dam-break problem with finite water depth and dry bed downstream of the dam. Most of the numerical schemes produce reasonable results for subcritical flows. Their performance for problems where there is a transition between subcritical and supercritical flows is mixed. Although many numerical schemes satisfy the Rankine-Hugoniot condition, some produce solutions which do not satisfy the entropy condition, producing nonphysical solutions. This was the case for the majority of first-order schemes examined. Numerical schemes which consider critical flow in the solution are guaranteed to produce entropy satisfying solutions. Second-order schemes avoid the generation of expansive shocks; however, some form of flux or slope limiter must be used to eliminate oscillations that are associated with these schemes. These limiters increase the complexity and the computational effort required, but they are generally more accurate than their first-order counterparts. The limiters employed by these second-order schemes will produce monotone or total variation diminishing solutions for scalar equations. Some limiters do not exhibit these properties when they are applied to the nonlinear shallow water wave equations. This comparative study shows that there are a variety of shock-capturing numerical schemes that are efficient, accurate, robust, and are suitable for solving the shallow water wave equations when discontinuities are encountered in the problem.  相似文献   

4.
The analytic solutions of inviscid and viscous water waves passing over a submerged rectangular dike are investigated. Owing to the fact that the orthogonality of eigenfunctions is invalid for viscous wave problem, two newly developed orthogonal inner products are applied to reduce the mathematical difficulty of viscous wave problem. Both inviscid and viscous water wave solutions are obtained under the assumption of linear water wave without separation. It shows that two solutions have no significant kinematic difference but the viscous contribution of dynamic effect is not negligible. Beside giving a better theoretical approach, which reduces the error of the conventional minimal squares method, the result of the present analytical solution can be used to quantitatively evaluate the correctness of experiments and also provides helpful information such as near wall boundary layer thickness and oscillating free surface for computational use.  相似文献   

5.
An improved accurate closed-form wave function analytic solution of two-dimensional scattering and diffraction of antiplane SH waves by a semicircular cylindrical hill on an elastic half space is presented. In the previous solution, stress and displacement residual auxiliary functions were defined at the circular interface above and below the circular hill. The method of weighted residues (moment method) was used to solve for the unknown scattered and transmitted waves by requiring each term of Fourier series expansion of these auxiliary residual functions to vanish. It was found that the stress residual amplitudes on both (left and right) rims of the hill (ideally should be zero) are not numerically insignificant, irrespective of how many terms used. It was pointed out that the shear stress at the rim is infinite, and that the stress auxiliary function is discontinuous at both rims of the hill, exhibiting a problem for the numerical solution that is more complicated than Gibbs’ phenomenon. The problem with the overshoot of the stress residual amplitudes at the rim was most likely numerical. In this paper, all displacement and stress waves were expressed as cosine functions, and the solution of the circular hill problem was reformulated in this paper, and, for the solution to be correct, the computed stress and displacement residual amplitudes were shown to be numerically negligible everywhere, including those at both rims of the hill. Displacements at higher frequencies are also computed.  相似文献   

6.
Undular bores and shocks generated by dam-break flows or tsunamis are examined considering nonhydrostatic pressure and dispersive effects in one- and two-horizontal-dimensional space. The fully nonlinear Boussinesq-type equations based on a weakly nonhydrostatic pressure assumption are chosen as the governing equations. The equation set is solved by a fourth-order accurate finite-volume method with an approximate Riemann solver. Several typical benchmark problems such as dam-break flows and tsunami wave fission are tested in one- and two-horizontal-dimensional space. The computed results by the Boussinesq-type model are at least as accurate as the results by the hydrostatic shallow water equations. This is particularly evident near the steep front of the wave, where frequency dispersion can play an important role. The magnitude of this nonhydrostatic pressure and dispersive effect near the front is quantified, and the engineering implications of neglecting these physics, as would be done through the use of a hydrostatic model, are discussed.  相似文献   

7.
Dam-Break Waves in Power-Law Channel Section   总被引:1,自引:0,他引:1  
The aim of this work is to highlight the effects of cross-sectional shape on dam-break wave propagation along channels by the solution of 1D conservative equations assuming a power-law variation of the channel width. An exact Riemann solution that allows a second-order accuracy of the solution for the power-law section shape is provided and is applied to the dam-break problem in valleys with different shapes but the same dam area. The streamflow state variables upstream of the bore and the bore speed for some typical sectional shapes (rectangular, triangular, concave, and convex banks) are determined as functions of variable flow depth differences and of the power law index.  相似文献   

8.
A mathematical model of dam-break shock waves, or flood waves, in channels of trapezoidal cross section is presented. When the model is applied to channels of rectangular cross section, a new theoretical solution expressed using one independent multinominal algebraic equation is derived. In the past, the solution had to be described using three interrelated equations. The new equation indicates that the hydraulic parameters of a shock wave—such as depth and velocity of flow, and velocity of discontinuity—are determined only by the ratio of initial downstream depth to initial upstream depth. The model shows that results from the new equation are completely equivalent to those of the set of old equations. In addition, the flood hydrograph produced by a dam break at any time or any site can be described by a single curve in terms of dimensionless variables.  相似文献   

9.
A two-fluid solver which can be applied to a variety of hydraulic flow problems has been developed. The scheme is based on the solution of the incompressible Euler equations for a variable density fluid system using the artificial compressibility method. The computational domain encompasses both water and air regions and the interface between the two fluids is treated as a contact discontinuity in the density field which is captured automatically as part of the solution using a high resolution Godunov-type scheme. A time-accurate solution has been achieved by using an implicit dual-time iteration technique. The complex geometry of the solid boundary arising in the real flow problems is represented using a novel Cartesian cut cell technique, which provides a boundary fitted mesh without the need for traditional mesh generation techniques. A number of test cases including the classical low amplitude sloshing tank and dam-break problems, as well as a collapsing water column hitting a downstream obstacle have been calculated using the present approach and the results compare very well with other theoretical and experimental results. Finally, a test case involving regular waves interacting with a sloping beach is also calculated to demonstrate the applicability of the method to real hydraulic problems.  相似文献   

10.
Numerical Solution of Boussinesq Equations to Simulate Dam-Break Flows   总被引:1,自引:0,他引:1  
To investigate the effect of nonhydrostatic pressure distribution, dam-break flows are simulated by numerically solving the one-dimensional Boussinesq equations by using a fourth-order explicit finite-difference scheme. The computed water surface profiles for different depth ratios have undulations near the bore front for depth ratios greater than 0.4. The results obtained by using the Saint Venant equations and the Boussinesq equations are compared to determine the contribution of individual Boussinesq terms in the simulation of dam-break flow. It is found that, for typical engineering applications, the Saint Venant equations give sufficiently accurate results for the maximum flow depth and the time to reach this value at a location downstream of the dam.  相似文献   

11.
This paper considers dam-break flow occurring in a horizontal smooth channel. Experiments were carried out with highly viscous Newtonian fluids, e.g., glucose syrup–water solutions. The frontal shape of dam-break flow and its evolution, as well as the free-surface profile, were measured using video-photographic and ultrasonic equipment, respectively. New features of viscous dam-break flow are pointed out. Notably indicated are flow regimes and the effect of reservoir length as well as the effect of fluid viscosity on flow development. Equations describing dam-break flow are derived in nondimensional form, then compared with the results from experiments.  相似文献   

12.
A time-domain numerical method is developed to analyze the hydroelastic responses of flexible floating structures to waves; in which, the boundary element method is applied to evaluate the fluid motion and the finite-element method to analyze the elastic deformation of structure. The dynamic wave-structure interaction is simulated by prescribing the conditions on a wave generation boundary for each time step and by satisfying the continuity of the pressure and displacement on the fluid-structure interface. A time-domain solution is obtained in a predictor-corrector scheme and through a time-stepping computation. The effect of space and time discretizations on the convergence and stability of solution for regular, random and solitary waves is discussed by comparing among numerical solutions. The validity of the present method is verified by comparing it with the experimental results for the three kinds of waves mentioned. Further, the fission of a solitary wave under a flexible floating structure is observed both in numerical analysis and experiments.  相似文献   

13.
Crack Growth Prediction by Manifold Method   总被引:2,自引:0,他引:2  
The prediction of crack growth is studied by the manifold method. The manifold method is a new numerical method proposed by Shi. This method provides a unified framework for solving problems dealing with both continuums and jointed materials. It can be considered as a generalized finite-element method and discontinuous deformation analysis. One of the most innovative features of the method is that it employs both a physical mesh and a mathematical mesh to formulate the physical problem. The physical mesh is dictated by the physical boundary of a problem, while the mathematical mesh is dictated by the computational consideration. These two meshes are interrelated through the application of weighting functions. In this study, a local mesh refinement and auto-remeshing schemes are proposed to extend the manifold method. The proposed model is first verified by comparing the numerical results with the benchmark solutions, and the results show satisfactory accuracy. The crack growth problems and the stress distributions are then investigated. The manifold method is proposed as an attractively new numerical technique for fracture mechanics analysis.  相似文献   

14.
In this paper, we investigate the extent to which well-known sediment transport capacity formulas can be used in one-dimensional (1D) numerical modeling of dam-break waves over movable beds. The 1D model considered here is a one-layer model based on the shallow-water equations, a bed update (Exner) equation, a space-lag equation for the nonequilibrium sediment transport and an empirical formula calculating the sediment transport capacity of the flow. The model incorporates a variety of sediment transport capacity formulas proposed by Meyer-Peter and Müller, Bagnold, Engelund and Hansen, Ackers and White, Smart and Jaeggi, van Rijn, Rickenmann, Cheng, Abrahams and Camenen, and Larson. We examine the performance of each formula by simulating four idealized laboratory cases on dam-break waves over sandy beds. Comparisons between numerical results and measurements show that for each case better predictions are obtained using a particular formula, but overall, formulas proposed by Meyer-Peter and Müller (with the factor 8 being replaced by 12), Smart and J?ggi, Cheng, Abrahams and Camenen, and Larson rank as the best predictors for the entire range of conditions studied here. Moreover, results show that in the cases where a bed step exists, implementing a mass failure mechanism in the numerical modeling plays an important role in reproducing the bed and water profiles.  相似文献   

15.
This experimental study focuses the influence of bed material mobility and initial downstream water level on maximum water level and time to peak of dam-break waves. It covers horizontal bed conditions on fixed bed, sand bed, and pumice bed. Results include water surface level time evolution, maxima wave levels and time to peak. The influence of bed material mobility and downstream water level was identified and characterized, stressing the importance of using mathematical models with appropriate sediment transport formulations instead of purely hydrodynamic models to simulate dam-break waves on mobile bed channels.  相似文献   

16.
The objective of this contribution is to analyze the formation of debris waves in natural channels. Numerical simulations are carried out with a 1D code, based on shallow-water equations and on the weighted averaged flux method. The numerical code represents the incised channel geometry with a power-law relation between local width and flow depth and accounts for all source terms in the momentum equation. The debris mixture is treated as a homogeneous fluid over a fixed bottom, whose rheological behavior alternatively follows Herschel-Bulkley, Bingham, or generalized viscoplastic models. The code is first validated by applying it to dam-break tests on mudflows down a laboratory chute and verifying its efficiency in the simulation of rapid transients. Then, following the analytical method developed by Trowbridge, the stability of a uniform flow for a generalized viscoplastic fluid is examined, showing that debris flows become unstable for Froude numbers well below 1. Applications of the code to real debris flow events in the Cortina d’Ampezzo area (Dolomites) are presented and compared with available measured hydrographs. A statistical analysis of debris waves shows that a good representation of wave statistics can be obtained with a proper calibration of rheological parameters. Finally, it is shown that a minimum duration of debris event and channel length are required for waves showing up, and an explanation, confirmed both by field data and numerical simulations, is provided.  相似文献   

17.
When an oscillatory water wave propagates over a soft poroelastic bed, a boundary layer exists within the porous bed and near the homogeneous water∕porous bed interface. Owing to the effect of the boundary layer, the conventional evaluation of the second kind of longitudinal wave inside the soft poroelastic bed by one parameter, ε1 = k0a, is very inaccurate so that a boundary layer correction approach for a soft poroelastic bed is proposed to solve the nonlinear water wave problem. Hence a perturbation expansion for the boundary layer correction approach based on two small parameters, ε1 and ε2 = k0∕k2, is proposed and then solved. The solutions carried out to the first three terms are valid for the first kind and the third kind of waves throughout the whole domain. The second kind of wave is solved systematically inside the boundary layer, whereas it disappears outside the boundary layer. The result is compared with the linear wave solution of Huang and Song in order to show the nonlinearity effect. The present study is very helpful to formulate a simplified boundary-value problem in numerical computation for soft poroelastic medium with irregular geometry.  相似文献   

18.
To determine the temperature fields associated with welding, significant efforts have been made to establish the relative merits of numerical approaches with variable material properties and the analytical approaches with constant material properties. Currently, analytical solutions are either based on the temperature field generated by a point source of heat or are developed for a finite domain derived approximately by using an infinite or semi-infinite heat kernel. Furthermore, the heat kernel applied in these solutions is derived from the Image method (for example, Nguyen’s book (Thermal Analysis of Welds, 2004)). The main problem with the heat kernels obtained from Image method is that they face the problem of singularity at and around the point where the heat source is located, and they do not satisfy the boundary condition accurately. That is why the Laplace transform method has been applied here instead of using the Image method to formulate a heat kernel that (1) converges rapidly, (2) avoids the problem of singularity, and (3) gives a good and robust approximation of the real analytic solution for the temperature field. The results obtained from the analytical solutions were compared with the results obtained from finite element method. The current work is believed to make a considerable contribution to the avoidance of previously mentioned problems by deriving a new approximate analytical solution for the temperature field on a three-dimensional finite body.  相似文献   

19.
A Lagrangian, nonhydrostatic, Boussinesq model for weakly nonlinear and weakly dispersive flow is presented. The model is an extension of the hydrostatic model—dynamic river model. The model uses a second-order, staggered grid, predictor-corrector scheme with a fractional step method for the computation of the nonhydrostatic pressure. Numerical results for solitary waves and undular bores are compared with Korteweg-de Vries analytical solutions and published numerical, laboratory, and theoretical results. The model reproduced well known features of solitary waves, such as wave speed, wave height, balance between nonlinear steepening and wave dispersion, nonlinear interactions, and phase shifting when waves interact. It is shown that the Lagrangian moving grid is dynamically adaptive in that it ensures a compression of the grid size under the wave to provide higher resolution in this region. Also the model successfully reproduced a train of undular waves (short waves) from a long wave such that the predicted amplitude of the leading wave in the train agreed well with published numerical and experimental results. For prismatic channels, the method has no numerical diffusion and it is demonstrated that a simple second-order scheme suffices to provide an efficient and economical solution for predicting nonhydrostatic shallow water flows.  相似文献   

20.
This paper describes a numerical investigation on the generation of three-dimensional (3D) fully nonlinear water waves by a submerged object moving at speeds varied from subcritical to supercritical conditions in an unbounded fluid domain. Considering a semispheroid as the moving object, simulations of the time evolutions of 3D free-surface elevation and flow field are performed. The present 3D model results are found to agree reasonably well with other published vertical two-dimensional (2D) and quasi-3D numerical solutions using Boussinesq-type models. Different from the 2D cases with near critical moving speeds, the 3D long-term wave pattern suggests that in addition to the circularly expanded upstream advancing solitonlike waves, a sequence of divergent and transverse waves are also developed behind the moving object. The velocity distributions and associated fluid-particle trajectories at the free-surface and middle layers are presented to show the 3D feature of the motion. The results under various vertical positions (referred as gap) of a moving object are also compared. It is found the gap has shown a substantial influence on the generated waves, especially in the wake region, when an object moves at a near critical or subcritical speed. However, the results under the case with a high supercritical moving speed indicate the gap has a negligible effect on the generated upstream and downstream waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号